
A Classical View on Benign Overfitting: The Role of Sample Size

Junhyung Park1, Patrick Blöbaum2, and Shiva Prasad Kasiviswanathan2

1ETH Zürich
2Amazon

Abstract

Benign overfitting is a phenomenon in machine learning where a model perfectly fits (interpolates)
the training data, including noisy examples, yet still generalizes well to unseen data. Understanding
this phenomenon has attracted considerable attention in recent years. In this work, we introduce
a conceptual shift, by focusing on almost benign overfitting, where models simultaneously achieve
both arbitrarily small training and test errors. This behavior is characteristic of neural networks,
which often achieve low (but non-zero) training error while still generalizing well. We hypothesize that
this almost benign overfitting can emerge even in classical regimes, by analyzing how the interaction
between sample size and model complexity enables larger models to achieve both good training fit but
still approach Bayes-optimal generalization. We substantiate this hypothesis with theoretical evidence
from two case studies: (i) kernel ridge regression, and (ii) least-squares regression using a two-layer
fully connected ReLU neural network trained via gradient flow. In both cases, we overcome the strong
assumptions often required in prior work on benign overfitting.

Our results on neural networks also provide the first generalization result in this setting that does
not rely on any assumptions about the underlying regression function or noise, beyond boundedness.
Our analysis introduces a novel proof technique based on decomposing the excess risk into estimation
and approximation errors, interpreting gradient flow as an implicit regularizer, that helps avoid uniform
convergence traps. This analysis idea could be of independent interest.

1



Table of Contents
1 Introduction 3

2 Adding Sample Size to the Risk vs. Model Complexity Plots 5

3 Benign Overfitting with Kernel Ridge Regression (KRR) 7

4 Bengin Overfitting with Trained Two-Layer ReLU Networks 8
4.1 Assumptions on Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Establishing Benign Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Conclusion 13

A Additional Related Works 20

B Additional Preliminaries 21
B.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.2 Standard Distributions and Concentration Results . . . . . . . . . . . . . . . . . . . . . . 21
B.3 Functions, Operators and Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . 22
B.4 Integral Operator Technique for RKHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.5 Real Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.6 U- and V-Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

C Missing Details from Section 3 28

D Missing Details from Section 4 30
D.1 Index of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D.2 NTK Theory of Two-Layer ReLU Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D.2.1 Neural Tangent Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
D.2.2 Initialization and Analytical Counterparts . . . . . . . . . . . . . . . . . . . . . . . 35
D.2.3 Spectral Theory for Neural Tangent Kernels . . . . . . . . . . . . . . . . . . . . . . 35
D.2.4 Full-Batch Gradient Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

D.3 High Probability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D.3.1 Randomness due to Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . 44
D.3.2 Randomness due to Sampling of Data . . . . . . . . . . . . . . . . . . . . . . . . . 50
D.3.3 Randomness due to both Weight Initialization and Sampling . . . . . . . . . . . . 52

D.4 Proof of Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
D.5 Proof of Small Approximation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
D.6 Proof of Small Estimation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
D.7 Putting it all Together: Generalization and Benign Overfitting . . . . . . . . . . . . . . . 68
D.8 Additional Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2



1 Introduction
Traditional statistical learning theory posits that overfitting impairs generalization, advocating for models
with capacity balanced between under- and overfitting, as illustrated by the U-shaped excess risk curve
(Györfi et al., 2006; Hastie et al., 2009). However, recent observations—particularly in overparameterized
neural networks that interpolate noisy data yet generalize well—have challenged this view, giving rise to
the “benign overfitting” phenomenon and spurring significant theoretical interest. A related trend is the
double descent effect, where the excess risk decreases again as model complexity increases beyond the
interpolation threshold, see e.g., Belkin et al. (2019).

In this paper, we investigate whether models can simultaneously achieve vanishing empirical risk (i.e.,
overfit to the noisy training data) while also attaining vanishing excess risk (i.e., generalize well). Departing
from prior works that focus on exact interpolation, we consider models that nearly interpolate—training
error is arbitrarily small but non-zero. This setting better reflects practical scenarios, where neural network
training typically results in small, but non-zero, training error. Throughout this paper, we adopt this
broader interpretation of the term benign overfitting to refer to scenarios where both the empirical risk
and excess risk are arbitrarily small (see Definition 1), rather than requiring exact interpolation.

We operate in the “classical regime” in the risk vs. model complexity plot, and provide theoretical
evidence that benign overfitting can, in fact, occur even in the classical regime, represented by the
U-shaped curve. This serves as a counterpoint to the predominant view in the literature that benign
overfitting is a phenomenon that occurs outside the classical regime. The key insight is that the risk
versus model capacity plots are, to our knowledge, almost always plotted for fixed sample size1, whether
it is the classical U-shaped curve, or the double (or indeed multiple) descent curves proposed in recent
years, or the multidimensional curves of (Curth et al., 2023). This omission is somewhat surprising, as the
sample size is a crucial element in assessing the ability of a model to fit the training data and to generalize
to unseen data. By carefully analyzing the relationship between sample size, model complexity, and the
nature of their effect on the empirical and excess risks, we prove that, with some commonly used ML
models, benign overfitting can occur in what is considered the classical regime. This allows us to avoid
the assumptions commonly made in prior works on benign overfitting—such as high input dimensionality,
specific structural properties of the regression function, or prescribed eigenvalue decay patterns of the
feature covariance matrix, see e.g. the survey by Bartlett et al. (2021).

Our Contributions. We start with an in-depth investigation into the risk versus model capacity plots.
Unlike previous works, we explicitly add sample size into the picture, and study the nature of the joint
effect of the model complexity and sample size on the risks. We hypothesize that benign overfitting can
occur in the classical regime, i.e., the trough of the U-shaped curve. We provide evidence supporting
this hypothesis by theoretically establishing benign overfitting in two foundational cases: i) kernel ridge
regression (KRR), and (ii) regression with two-layer fully connected ReLU neural network trained by
gradient flow. All of our results are non-asymptotic and hold with high probability. Notably, they also
hold on low-dimensional inputs.

As an initial illustration, we theoretically validate this hypothesis in the case of kernel KRR, in
which the model complexity is given by the reproducing kernel Hilbert space (RKHS) norm, which
in turn is controlled by a single regularization parameter. Our proof is based on integral operator
techniques (Caponnetto and De Vito, 2007; Park and Muandet, 2020), and does not rely on uniform
convergence. Also, unlike previous results on benign overfitting with KRR (e.g., Liang and Rakhlin (2020);
Barzilai and Shamir (2024) who impose heavy assumptions on the spectral decomposition of the regression
function), we impose minimal assumptions on the true regression function and the noise – just that they
are both bounded.

Our main technical contribution is the analysis of least-square regression using two-layer ReLU neural
networks trained via gradient flow, wherein we establish the first benign overfitting result in this setting.2
We make no assumptions on the underlying regression function or the noise, other than that they are
both bounded. Establishing benign overfitting requires understanding generalization. We provide high-
probability generalization guarantees for arbitrary regression functions, addressing a fundamental open
question in the theory. We impose assumptions that the network width as well as the sample size are

1Some exceptions exist, for example, Nakkiran et al. (2021, Figures 11 & 12).
2The use of ReLU activations introduces additional challenges due to the non-differentiability of the resulting loss function.

In contrast, extending our approach to smooth activations would yield simpler proofs.

3



sufficiently large (but still finite), which, together with the fact that we are doing gradient flow, means
that we are in the NTK regime (Jacot et al., 2018).3 Here, the model complexity has two dimensions: the
network width and the duration of gradient flow. The proof contains multiple novelties. (i) Decomposition
of the excess risk into approximation and estimation errors, inspired by the integral operator technique in
KRR, with gradient flow viewed as implicit regularization. (ii) Extension of a bound on the Hadamard
product of matrices to integral operators for the approximation error proof. (iii) Side-stepping uniform
convergence in the estimation error proof by concentrating only at initialization, using novel results on
concentration of vector-valued U- and V-statistics (Lee, 1990), and using repeated integration to obtain
bounds at later times. Furthermore, we show that under the same high-probability event, under the same
set of assumptions on the relative scaling of input size, dimension, and network width, these networks
also exhibit overfitting behavior, thus establishing benign overfitting. We validate these results through
experiments on both real and synthetic datasets.

Finally, we stress that, due to technical challenges, we did not optimize bounds on various parameters
like sample size, and we believe tighter bounds are possible with refined analysis. We also like to point
that several novel tools in our proofs may independently interest the community.

Related Works. Benign overfitting is a challenging phenomenon to analyze theoretically, and therefore
researchers took to analyzing it in simple models, such as linear regression (Bartlett et al., 2020; Muthuku-
mar et al., 2020; Zou et al., 2021; Koehler et al., 2021; Chinot and Lerasle, 2022), kernel regression
(Ghorbani et al., 2020; Liang and Rakhlin, 2020; Liang et al., 2020; Montanari and Zhong, 2022; Mallinar
et al., 2022; Xiao et al., 2022; Zhou et al., 2024; Barzilai and Shamir, 2024; Cheng et al., 2024) or random
feature regression (Ghorbani et al., 2021; Li et al., 2021; Hastie et al., 2022; Mei and Montanari, 2022).
Extensions to neural network classifiers have emerged (Frei et al., 2022; Cao et al., 2022; Frei et al.,
2023; Xu and Gu, 2023; Kou et al., 2023; Kornowski et al., 2023; Zhu et al., 2023; Harel et al., 2024;
Xu and Chen, 2025; Wang et al., 2024), though these often rely on margin-based techniques specific to
classification. Zhu et al. (2023) study benign overfitting of deep networks in the NTK regime for the
classification problem. They also discuss the regression problem, but the result is an expectation bound of
the excess risk rather than a high-probability bound, and their solution is not explicitly shown to overfit
that we do. Additionally, as with some prior works, they also rely on an assumption that the regression
function lives in the RKHS of the NTK, that we do not make here. The concept of overfitting was recently
categorized as “benign”, “tempered”, or “catastrophic” based on the behavior of the excess risk in the limit
of infinite data (Mallinar et al., 2022).

While prior non-asymptotic analyses of KRR provide sharp excess risk bounds under weak assumptions
(Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017; Mourtada and Rosasco, 2022), they do not
address the simultaneous minimization of empirical and excess risks in noisy settings—except under strong
spectral assumptions (Liang and Rakhlin, 2020; Barzilai and Shamir, 2024). In contrast, we show benign
overfitting with minimal assumption on the regression function and noise, even in low dimensions.

As noted, existing proofs of benign overfitting typically rely on strong assumptions and high-dimensional
settings. In contrast, numerous negative results rule it out in fixed dimensions, particularly for kernel
methods (Rakhlin and Zhai, 2019; Buchholz, 2022; Haas et al., 2023; Beaglehole et al., 2023; Li et al.,
2024; Medvedev et al., 2024; Yang, 2025) and interpolating neural networks (Joshi et al., 2024). We
address these apparent contradictions in Section 2.

A more in-depth discussion of several additional related works is postponed to Appendix A.

Notations. Let x ∈ Rd and y ∈ R be random variables4. We make a standard assumption from the
literature, e.g., (Arora et al., 2019; Mei and Montanari, 2022; Razborov, 2022) , that x follows the uniform
distribution on the sphere Sd−1, denoted by ρd−1. 5 We denote the space of square-integrable (with
respect to ρd−1) functions by L2(ρd−1), with norm ∥·∥2. We assume that |y| is almost surely bounded
above by 1:

P (|y| ⩽ 1) = 1. (|y|-Bound)
3This regime (a.k.a. lazy training regime) informally refers to the behavior that network parameters experience minimal

change (in the Frobenius norm) from their random initialization throughout training (Razborov, 2022; Montanari and Zhong,
2022). Refer Appendix A for discussion on additional NTK-related work.

4We use uppercase letters for matrices, bold lowercase for vectors, and regular lowercase for scalars, without distinguishing
random variables from their values; context will make meanings clear.

5Note that while this assumption is violated in our real data experiments, our hypothesis continues to hold.

4



We consider the problem of estimating the regression function f⋆ : Rd → R defined by f⋆(x) = E[y | x].
Then clearly, P (|f⋆(x)| > 1) = P (|E[y | x]| > 1) ⩽ P (E[|y| | x] > 1) ⩽ 0, so the essential supremum
ess supx∈Sd−1 |f⋆(x)| ⩽ 1 and we have

P(|f⋆(x)| ⩽ 1) = 1, ∥f⋆∥2 ⩽ 1. (f⋆-Bound)

Define the noise variable ξ⋆ = y − E[y | x] = y − f⋆(x); evidently, E[ξ⋆] = 0. We make no assumption
on the noise generation process other than boundedness. For n ∈ N and i = 1, ..., n, let {(xi, yi, ξ⋆i )}ni=1

be i.i.d. copies of (x, y, ξ⋆). Also, define the feature matrix, the label vector and the noise vector as

X :=

x⊤
1
...

x⊤
n

 ∈ Rn×d, y :=

y1
...
yn

 ∈ Rn, ξ⋆ :=

ξ⋆1
...
ξ⋆n

 ∈ Rn.

We consider the square loss, (y, y′) 7→ (y − y′)2 : R× R → R. For a function f : Rd → R, the population
risk (or test error, or generalization error) of f is

R(f) = E[(f(x)− y)2].

It is straightforward to see that R is minimized by f⋆. The main quantity of interest in generalization is
the excess risk of f , defined by

Excess Risk: R(f)−R(f⋆) = ∥f − f⋆∥22.

Now write f = (f(x1), ..., f(xn))
⊤ ∈ Rn.6 Then the empirical risk (or training error) of f is

Empirical Risk: R(f) =
1

n

n∑
i=1

(f(xi)− yi)
2
.

Definition 1 (Benign Overfitting). A learning algorithm A : {(xi, yi)}ni=1 7→ f̂ takes as input an i.i.d.
sample of n noisy data points (as defined above), and outputs a function f̂ : Rd → R. We say that a
(possibly random) learning algorithm A achieves benign overfitting if, for all ε, δ > 0, there exists some
n such that, with probability at least 1− δ, we simultaneously have vanishing excess risk and vanishing
empirical risk:

Empirical risk: R(f̂) ⩽ ε and Excess risk: R(f̂)−R(f⋆) ⩽ ε.

2 Adding Sample Size to the Risk vs. Model Complexity Plots
In this section, we investigate various scenarios that can occur in the risk versus model complexity plot7,
taking into account the sample size. We highlight one scenario in which benign overfitting occurs in
the classical regime of U-shaped excess risk curve (Figure 1(b)), with proofs covering two concrete cases
provided in later sections. We also offer hypotheses on which scenario/regimes existing results (both
positive and negative) on benign overfitting reside in (Figure 1(d)).

Figure 1(a) shows a classical U-shaped excess risk and monotonically decreasing empirical risk, for a
fixed sample size. As the sample size increases, two possible scenarios may occur.

Scenario 1: First is the well-specified case (Figure 1(c)), whereby the learning algorithm at the trough
of the U-curve is able to produce the true underlying regression function, f⋆. This is typically true in
well-specified, simple, parametric models. As an example, consider well-specified linear regression, where
f⋆(x) = β⊤x for some β ∈ Rd. Then regardless of the sample size, the model with the lowest excess risk

6We will use bold letters to denote that evaluation on the training set {(x1, y1), ..., (xn, yn)} has taken place; the non-bold
letters denote their population counterparts.

7For clarity, we illustrate using a single-dimensional model complexity with a U-shaped excess risk curve, though real-world
complexity is often multidimensional and the curve need not be U-shaped (Curth et al., 2023). Note also that we plot the
excess risk rather than the usual population risk used commonly in such plots.

5



Model Complexity

Risk

⋆

Underfitting Overfitting

(a) Classical U-shaped curve.
Model Complexity

Risk

⋆
⋆

⋆

(b) Benign overfitting in the classical regime.

Model Complexity

Risk

⋆ ⋆ ⋆

(c) Well-specified case.
Model Complexity

Risk

⋆
⋆

⋆

(d) Interpolation regime.

Figure 1: Dashed and solid lines show empirical and excess risk, respectively. On plots (b), (c) and (d),
black, blue and red curves are in order of increasing sample size. The vertical dotted lines represent the
model complexity of the model under consideration, and the points where the empirical and excess risk
curves cross and stay over are marked with ⋆ (which may not necessarily happen at the troughs of the
U-curves). In (a) and (c), the model is taken at trough of the stationary U-curve, and in (b), the model is
taken at the troughs of the moving U-curve. In (d), the model is taken in the interpolation regime.

is found by minimizing the empirical risk with f̂(x) = β̂⊤x (corresponding to the vertical dotted line in
Figure 1(c) at the trough of the U-curves), and any deviation from this model complexity, for example by
adding more features, will produce poorly generalizing models. With more data, the excess risk decreases
toward the Bayes-optimal level, but the empirical risk increases with sample size and approaches the noise
level, so benign overfitting does not arise.

Scenario 2: The more interesting case for modern learning algorithms is represented in Figure 1(b).
It is rarely the case in modern machine learning that the learning algorithm at a particular complexity
level is well-specified. For neural networks, even if f⋆ is a neural network, using gradient-based learning
algorithms with a network of the same architecture as f⋆ will not recover the true parameters. This is also
true for kernel regression, where there is a closed form solution. Suppose that regression is being carried
out in an RKHS with kernel κ : Rd ×Rd → R, and f⋆ lives in this RKHS, say f⋆(·) =

∑m
j=1 αjκ(x̃j , ·) for

some {x̃}mj=1. Even in this seemingly well-specified case, confining solutions to have the same RKHS norm
as f⋆ will not recover f⋆, since the empirical risk minimizer is of the form

∑n
i=1 βiκ(xi, ·) – the kernel

evaluations are taken at different x points.
In these cases, instead of there being a single “right” model as in Figure 1(c), we hypothesize that the

ideal model complexity (corresponding to the vertical dotted lines in Figure 1(b)) will depend on the
sample size, with more samples and larger models enabling better generalization – in other words, the
excess risk curves move “down and to the right”, as in Figure 1(b). Moreover, we hypothesize that the
empirical risk at these “moving troughs” of the U-curve will also decrease, such that, as the sample size
and model complexity become sufficiently large for both the empirical and excess risks to be below a
desired accuracy level. This phenomenon was empirically shown in (Nakkiran et al., 2021, Figures 11 &
12), and we rigorously establish it via upper bounds in two settings:

1. As the first case study, we consider the setting of KRR, i.e., regularized empirical risk minimizers in
an RKHS. Consider a kernel κ : Rd ×Rd → R. We denote its associated RKHS by H , and its norm
by ∥·∥H . Define the empirical risk minimizer:

f̂γ = argminf∈H

1

n

n∑
i=1

(f(xi)− yi)
2 + γ∥f∥2H .

6



We prove that under appropriate scaling of the sample size (n) and the regularization parameter (γ)
with respect to other quantities, such as the failure probability (δ) and the accuracy level (ε), we
can make both empirical risk (R(f̂γ)) and excess risk (R(f̂γ)−R(f⋆)) small.

2. For the second case study, we consider the regression problem with the square loss, of two-layer
ReLU neural networks trained by gradient flow. We theoretically establish conditions on the sample
size, network width, feature dimension with respect to ε and δ, under which the neural network f̂T
obtained by running gradient flow for T amount of time has both small empirical risk (R(f̂T )) and
excess risk (R(f̂T )−R(f⋆)).

At first glance, our findings may seem inconsistent with prior results, both positive which require strong
assumptions like high dimensionality, and negative which rule out benign overfitting in low dimensions.
The resolution lies in the fact that existing works, both positive and negative, start by assuming an
overfitting (interpolating) model, often in closed form (models in the interpolation regime, to the right of
the vertical dotted lines in Figure 1(d)), then study the behavior of the excess risk in this interpolation
regime as sample size is increased, rather than staying at the trough of the U-curve, as in Figure 1(b).
As the sample size increases, larger and larger models are required to fit the data perfectly, thus the
interpolation regime shifts to the right, but the model under consideration is always some way up the
slope of the U-curve. Hence, it is not surprising that there exist negative results stating that, even if the
sample size goes to infinity, interpolating models do not approach the Bayes optimal excess risk. On the
other hand, it is equally unsurprising that the positive results rely on heavy assumptions to show that the
excess risk of the model, which is always some way up the slope of the U-curve, converges to zero with
increasing sample size.

3 Benign Overfitting with Kernel Ridge Regression (KRR)
In this section, we prove that solutions of KRR, i.e., regularized empirical risk minimizers in an RKHS,
achieves benign overfitting, with the appropriate scaling of the sample size and the regularization parameter.

We take the kernel κ : Rd × Rd → R. We denote its associated RKHS by H , and its norm by ∥·∥H .
In addition to the risks defined in Section 1, we define the regularized population and empirical risks for
functions f ∈ H as follows:

Rγ(f) = E[(f(x)− y)2] + γ∥f∥2H , and Rγ(f) =
1

n

n∑
i=1

(f(xi)− yi)
2 + γ∥f∥2H .

We denote their minimizers in H as fγ = argminf∈H Rγ(f) and f̂γ = argminf∈H Rγ(f). Define the
accuracy level ε > 0 and probability of failure δ > 0. By the denseness of H in L2(ρ), there is an fε ∈ H
such that ∥f⋆ − fε∥22 ⩽ ε

8 .
Now, for simplicity, in this paper, we focus on the specific case of the Neural Tangent Kernel

(NTK) (Jacot et al., 2018) defined by

κ(x,x′) = x · x′
(
1

2
− arccos(x · x′)

2π

)
.

The only purpose that the Neural Tangent Kernel serves in this section is to allow us to use the same
minimum eigenvalue results. We stress that the same proofs and qualitative behavior hold for any bounded
reproducing kernel with appropriate lower bound conditions on the minimum eigenvalue of the Gram
matrix, with the associated RKHS dense in L2(ρd−1)

8.

Assumption 1. Suppose that the quantities ε, δ, γ, d, ∥fε∥H and n satisfy the following relations9. In
the text in red below, we give more intuitive interpretations of the technical assumptions.

(i) e−d ⩽ δ
4 ,

√
n− C

√
d ⩾ 2√

5

√
n,
(

γ
γ+ 1

5d

)2
⩽ ε. (d ⩾ Ω(log( 1δ )), n ⩾ Ω(d), γ ⩽ O(

√
ε
d ))

8H is dense in L2(ρ) if, for any f ∈ L2(ρ) and any ε, there exists some fε ∈ H such that ∥f − fε∥2 ⩽ ε. This is a
common condition, satisfied by many common kernels (Micchelli et al., 2006).

9Note that C > 0 is an absolute constant that first appears in Lemma 17(i).

7



(ii) γ∥fε∥2H ⩽ 1
8ε. (γ ⩽ O( ε

∥fε∥2
2
))

(iii) n ⩾
16(1+ 1

γ )2 log( 4
δ )

γ2ε . (n ⩾ Ω(
log( 1

δ )

γ4ε )

For fixed ε and δ, we start with the existence of fε, then sequentially choose d, γ and n to satisfy (i),
(ii) and (iii) respectively, so it is clear that there are no inconsistencies between these assumptions. Given
the model, f̂γ , we now look at the defned empirical and excess risks. Our first result bounds the empirical
risk of f̂γ .

We first recall the following explicit expressions of the regularized risk minimizers (Park and Muandet,
2020, Lemma 2.4):

fγ = (ι∗ ◦ ι+ γIdH)−1ι∗f⋆ = ι∗(ι ◦ ι∗ + γId2)
−1f⋆

f̂γ = (nι∗X ◦ ιX + γIdH)−1ι∗Xy = ι∗X(nιX ◦ ι∗X + γIdRn)−1y.

We also inherit the notations from Appendix B.3.

Theorem 2 (Overfitting). Suppose that Assumption 1(i) holds. Then there is an event with probability at
least 1− δ

2 on which R(f̂γ) ⩽ ε.

Next, we investigate whether f̂γ can also generalize. For this, we use the following decomposition of
(the square-root of) the excess risk into approximation and estimation errors:

∥f⋆ − f̂γ∥2 ⩽ ∥f⋆ − fγ∥2︸ ︷︷ ︸
Approximation Error

+ ∥fγ − f̂γ∥2︸ ︷︷ ︸
Estimation Error

. (3.1)

The next result shows that we can bound the approximation error.

Theorem 3 (Approximation). If Assumption 1(ii) holds, then we have that ∥f⋆ − fγ∥2 ⩽ 1
2

√
ε.

Note that Theorem 3 is a deterministic result. Next, we have a bound on the estimation error.

Theorem 4 (Estimation). Suppose that Assumption 1(iii) holds. Then there is an event with probability
at least 1− δ

2 on which ∥fγ − f̂γ∥2 ⩽ 1
2

√
ε.

Using the decomposition in (3.1), we have the following generalization bound as an immediate corollary
of Theorems 3 and 4.

Theorem 5 (Generalization). Suppose that Assumption 1(ii) & (iii) hold. Then on the same event as in
Theorem 4, we have R(f̂γ)−R(f⋆) ⩽ ε.

Finally, as an immediate corollary of Theorems 2 and 5, we have the benign overfitting result.

Theorem 6 (Benign Overfitting). Suppose that all the conditions in Assumption 1 hold. Then there is
an event with probability at least 1− δ on which

Empirical Risk: R(f̂γ) ⩽ ε and Excess Risk: R(f̂γ)−R(f⋆) ⩽ ε.

These results precisely match our hypothesis in Section 2. If we reduce γ while keeping n fixed, then
Assumption 1(iii) is not satisfied, and we get vacuous estimation error bounds, corresponding to the
upward slope of each curve in Figure 1(b). However, if we simultaneously reduce γ and increase n, making
sure that all the conditions in Assumption 1 hold, corresponding to staying at the trough of the U-shaped
curves in Figure 1(b), then we achieve benign overfitting.

4 Bengin Overfitting with Trained Two-Layer ReLU Networks
In this section, we prove the precise conditions under which two-layer fully connected ReLU neural
networks trained by gradient flow in the NTK regime achieve benign overfitting.10 Our proofs are different

10There are some valid criticisms on the shortcomings of NTK regime, which we discuss in Appendix A.

8



from the standard NTK technique of matching the dynamics of the neural network to that of gradient
iterates in an RKHS, and brings novel ideas that could be of independent interest. We start with a
discussion of the model and assumptions, with the main results presented in Section 4.2.

We consider a 2-layer fully-connected neural network with ReLU activation function, where m ∈ N,
the width of the hidden layer, is an even number for the antisymmetric initialization scheme to come
later. Specifically, write ϕ : R → R for the ReLU function defined as ϕ(z) = max{0, z}, and with a slight
abuse of notation, write ϕ : Rm → Rm for the componentwise ReLU function. Denote by W ∈ Rm×d

the weight matrix of the hidden layer, by wj ∈ Rd, j = 1, ...,m the jth neuron of the hidden layer and
a = (a1, ..., am)

⊤ ∈ Rm the weights of the output layer. Then for x = (x1, ..., xd)
⊤ ∈ Rd, the output of

the network is

fW (x) =
1√
m
a · ϕ (Wx) =

1√
m

m∑
j=1

ajϕ (wj · x) =
1√
m

m∑
j=1

ajϕ

(
d∑
k=1

Wjkxk

)
.

We also define the “gradient” ϕ′ of the ReLU function by ϕ′(z) = 1{z > 0}, and the gradient function (see
beginning of Appendix D.2) GW : Rd → Rm×d at W as

GW (x) = ∇W fW (x) =
1√
m

(a⊙ ϕ′(Wx))x⊤.

In Appendix D.2, we discuss and develop the relevant parts of neural tangent kernel theory. In Table 1,
we collect all relevant notations introduced in this part.

We now discuss the initialization of the weights, W (0) ∈ Rm×d, or wj(0) ∈ Rd, j = 1, ...,m. The
hidden layer weights are initialized by standard Gaussians. Recall that m is an even number; this was to
facilitate the popular antisymmetric initialization trick, e.g., (Zhang et al., 2020, Section 6), (Bowman and
Montufar, 2022, Section 2.3), and (Montanari and Zhong, 2022, Eqn. (34) & Remark 7(ii)). We provide
details of this initialization in Appendix D.2.2. This initialization ensures that our network at initialization
is exactly zero, i.e., fW (0)(x) = 0 for all x ∈ Sd−1. The output layer weights aj , j = 1, ...,m are initialized
from Unif{−1, 1} and are kept fixed throughout training. This assumption of keeping output layer weights
fixed is also quite standard in theoretical analysis of two-layer networks (Wang et al., 2024; Bartlett et al.,
2021; Montanari and Zhong, 2022).

We perform gradient flow with respect to both R and R as follows. For t ⩾ 0, denote by W (t) and
Ŵ (t) the weight matrix at time t obtained by gradient flow with respect to R and R respectively.11 They
both start at random initialization W (0) and are updated as follows:

dW

dt
= −∇WR(fW (t)),

dŴ

dt
= −∇WR(fŴ (t)).

For more details about the gradient flow, see Appendix D.2.4 and Table 2. As a matter of notation, we
denote ft = fW (t), f̂t = fŴ (t).

We define the analytical NTK κ : Rd × Rd → R by κ(x,x′) = EW∼W (0)[⟨GW (x), GW (x′)⟩F]. This
kernel has an associated operator H : L2(ρd−1) → L2(ρd−1), Hf(·) = Ex[f(x)κ(x, ·)]. We denote the
eigenvalues and associated eigenfunctions of H as λ1 ⩾ λ2 ⩾ ... and φl, l = 1, 2, .... For an arbitrary L ∈ N
and a function f ∈ L2(ρd−1), we denote by the superscript L in fL the projection of f onto the subspace
of L2(ρd−1) spanned by the first L eigenfunctions φ1, ..., φL, and we denote by f̃L the projection of f
onto the subspace of L2(ρd−1) spanned by the remaining eigenfunctions φL+1, φL+2, .... Then we have

fL :=

L∑
l=1

⟨f, φl⟩2φl, f̃L :=

∞∑
l=L+1

⟨f, φl⟩2φl, f = fL + f̃L, ∥f∥22 = ∥fL∥22 + ∥f̃L∥22.

See Appendix D.2.3 and Table 3 for more details on these projections and decompositions.

4.1 Assumptions on Parameters
Recall that we defined ε and δ as the desired accuracy level and failure probability respectively. We define
a few additional quantities.

11Note that we have no GF iterates on the RKHS, but rather, two neural network GF iterates, based on population and
empirical risks. The population risk iterate is not computable and is used only for proof purposes.

9



Since ∥f⋆∥22 =
∑∞
l=1⟨f⋆, φl⟩22 is a convergent series, there exists some Lε ∈ N such that

∥f̃⋆Lε∥2 =

( ∞∑
l=Lε+1

⟨f⋆, φl⟩22

)1/2

⩽

√
ε

4
. (4.1)

Define λε = λLε as the Lε-th eigenvalue of H. The duration for which gradient flow will be run is

Tε =
2

λε
log

(
2√
ε

)
. (4.2)

Finally, we define Uε, needed to bound the estimation error, as the smallest integer U such that

1

U !

(
8Tε
d

)U
⩽

√
ε

14
. (4.3)

Note that Uε has to exist, since U ! grows much faster than
(
8Tε

d

)U
.

Assumption 2. Suppose that d, n, m and Uε satisfy the following relations with respect to δ.

(i) e−d ⩽ δ
12 . (d ⩾ Ω(log( 1δ )))

(ii) n(
√
2e)−

m
40 ⩽ δ

6 and
√
n− C

√
d ⩾ 2√

5

√
n. (m− log n ⩾ Ω(log( 1δ )) and n ⩾ Ω(d))

(iii) 2Uε

n ⩽ δ
6 ( nUε

⩾ Ω( 1δ ))

These assumptions connect key quantities to the failure probability δ and support the high-probability
results in Appendix D.3. Assumption 2(i) applies to all results, Assumption 2(ii) to overfitting and
estimation, and Assumption 2(iii) to estimation only.

Assumption 3. Suppose that n and m are sufficiently large with respect to d, ε, λε, Tε and Uε, in the
following sense.

(i) 4(34 +
√
logm)

√
d
m ⩽ 1

10 − 1
16 . ( m

logm ⩾ Ω(d))

(ii) λε ⩾ 10
√

log(2m)
md + 2√

md3λε
(3
√
2 +

√
logm). ( m

logm ⩾ Ω( 1
d3λ4

ε
))

(iii) 8√
d

∑Uε

u=1
(2Tε)

u

u!

√
log(nu)
⌊n
u ⌋ ⩽ 1

14

√
ε. ( n

logn ⩾ Ω
(
U2

ε (2Tε)
4Tε+1 log(2Tε)

dε((2Tε)!)2

)
)

(iv) 6+
√
2 logm√
mdλε

∑Uε

u=2
Tu
ε

u!du ⩽ 1
14

√
ε. ( m

logm ⩾ Ω
(
U2

ε (
Tε
d )2Tε/d

dε((Tε
d )!)2λ2

ε

)
)

Assumptions 3(i) & 3(ii) are the minimum width of the network required for the overfitting and
approximation results respectively. Assumption 3(iii) is the sample complexity required for estimation
error, and is a sufficient condition for (ii). Assumption 3(iv) is a condition on the width of the network m
required for the proof of the estimation error result, and is a sufficient condition for Assumptions 3(i)
and 3(ii).

Consistency of the Assumptions. From fixed ε and δ, we start by choosing d to satisfy Assumption 2(i).
Note that we just require the d = Ω(log(1/δ)). Then choose λε, Tε and Uε (which implicitly depend on d).
Finally, we choose n and m to satisfy the remaining conditions in Assumptions 2 & 3. While our results
holds for any f⋆, a point to keep in mind is that without further assumptions, λε can be arbitrarily small,
leading to arbitrarily large Tε and Uε, which in turn would require n and m to be arbitrarily large to
ensure our results hold, in accordance with the no free lunch principle.

10



Simplifying the Assumptions. We note that for particular classes of f⋆, we can simplify the above
assumptions. For example, if we assume that ∥f̃⋆d∥2 ⩽ 1

4

√
ε (i.e., most of f⋆ is concentrated on the first

d eigenfunctions of H), then we have particularly nice properties. From Appendix D.2.3, we know that
λε =

1
4d , and hence Tε = 8d log( 2√

ε
) and Uε will be in the order of log( 1√

ε
). This would in turn imply that

the network width required for approximation (Assumption 3(ii)) would be m
logm ⩾ Ω(d), the same as the

width required for overfitting (Assumption 3(i)). Moreover, using d ⩾ Ω(log( 1δ )), the sample complexity
required for estimation in Assumption 3(iii) would be, hiding logarithmic terms, n ⩾ Ω̃( 1

ε(
√
εδ)log log(1/(

√
εδ)) ),

which is essentially polynomial in 1/ε and 1/δ. Finally, the network width required for estimation in
Assumption 3(iv) would be, again hiding logarithmic terms, m ⩾ Ω( 1

εlog log(1/
√

ε)+1 ). Finally, we expect
that a more refined analysis could reduce this dependence.

4.2 Establishing Benign Overfitting
Our main idea is to view gradient flow as implicit regularization. Denote by f̂t the neural network obtained
by running gradient flow for t amount of time on the empirical risk R, and by ft the network obtained from
gradient flow on the population risk R.12 Then we analyze the excess risk of f̂t using the decomposition,

∥f̂t − f⋆∥2 ⩽ ∥f̂t − ft∥2︸ ︷︷ ︸
estimation error

+ ∥ft − f⋆∥2︸ ︷︷ ︸
approximation error

. (4.4)

Our technical novelty comes in terms of introducing this approximation-estimation decomposition of the
gradient flow trajectory. We initiate the study of the population risk gradient flow trajectory ft of the
finite-width network, both in terms of how it approximates the regression function and how it deviates
from the empirical trajectory f̂t. Our results do not rely on any uniform convergence over the function
class or the parameter space, therefore, the bounds do not deteriorate with more parameters.

Overfitting. We first state the overfitting result. A crucial requirement for establishing benign overfitting
is that all our results must hold on the same high-probability event, under a common set of assumptions.
The proof is in Appendix D.4.

Theorem 7 (Overfitting). If Assumptions 2(i) & (ii) and 3(i) are satisfied, there is an event with
probability at least 1− δ on which R(f̂t) ⩽ e−t/4d. Moreover, at time t = Tε, we have R(f̂Tε

) ⩽ ε.

The proof outline of this result is by now somewhat standard recipe in the NTK literature, by lower-
bounding the minimum eigenvalue of the NTK matrix uniformly over time with high probability, and
applying Grönwall’s inequality. Also worth noting is that our analysis of the empirical risk can also easily
be extended to gradient descent, instead of gradient flow.

Bounding Approximation Error. Under no other assumption on the underlying true regression
function than the fact that it is essentially bounded (f⋆-Bound), we first show that we can find a width
m of the network such that, if we run gradient flow for Tε (as defined in (4.2)), then the approximation
error becomes vanishingly small. Note that approximation error has no dependence on the samples. The
full proof is in Appendix D.5,.

Theorem 8 (Approximation Error). Suppose that Assumptions 2(i) and 3(ii) are satisfied. Then, on
the same event as in Theorem 7, we have, for t ∈ [0, Tε], ∥ft − f⋆∥2 ⩽ exp (−λεt/2). Moreover, at time
t = Tε, we have ∥ft − f⋆∥2 ⩽

√
ε/2.

The proof follows a similar outline as the overfitting proof, with the empirical risk R replaced by
the population risk, R. However, this provides significant challenges, as the NTK Gram matrices are
replaced by the NTK operators, and unlike the eigenvalues of the NTK Gram matrices, which can be
lower-bounded uniformly over time, the NTK operators have infinitely many eigenvalues that converge to
zero. To overcome this issue, we find the eigenspace of L2(ρd−1) based on ε in which “most” (all but

√
ε/4

of the norm, to be specific) of f⋆ lives in, spanned by the top Lε eigenfunctions of H. In this subspace, we
12Note that we can’t construct ft as we do not have access to population risk. This quantity is only used for theoretical

analysis.

11



show that ∥ft − f⋆∥2 can be shown to decay exponentially until it is below
√
ε/2, treating λε essentially

as the minimum eigenvalue, while ensuring that the component of f⋆ in the complement does not grow
beyond ε/4.

On the technical side, additional hurdles had to be overcome. The concentration of the NTK operator at
initialization to the analytic NTK operator is a much more difficult task than the analogous concentration
of NTK matrices, since these objects live in the Banach space of operators rather than Euclidean spaces.
Much of the work for this is done in Lemma 16(ii), where we used rather laborious VC-theory arguments.
Along the gradient flow trajectory, the key result was Lemma 12, which extends a bound on the spectral
norm of Hadamard product of matrices (M-2) to analogous integral operators. This is a novel result that
could be of independent interest.

Bounding Estimation Error. We show that, for the network width m and the time Tε (given in (4.2))
required to reach vanishingly small approximation error, we can find a sample size n large enough to
ensure small estimation error. The full proof is provided in Appendix D.6.

Theorem 9 (Estimation Error). Suppose that all the conditions in Assumptions 2 and 3 are satisfied.
Then, on the same event as in Theorem 7, we have ∥f̂Tε − fTε∥2 ⩽

√
ε/2.

We briefly sketch the proof here. We first note that

∥f̂Tε
− fTε

∥2 ⩽
1√
d
∥Ŵ (Tε)−W (Tε)∥F ⩽

1√
d

∥∥∥∥∥
∫ Tε

0

dŴ

dt
− dW

dt
dt

∥∥∥∥∥
F

using the 1-Lipschitzness of the ReLU function and the isotropy of the data distribution. At first glance,
it seems that one has to perform uniform concentration of dŴdt to dW

dt over (some subset of) the parameter
space Rm×d and over t ∈ [0, Tε], which would give vacuous bounds. However, this can be avoided following
the key observation that, at time t = 0, the concentration of dŴ

dt

∣∣∣
t=0

to dW
dt

∣∣∣
t=0

requires no uniform
concentration. Hence, we have the following bound:

∥f̂Tε − fTε∥2 ⩽
1√
d

∥∥∥∥∥
∫ Tε

0

dŴ

dt
− dŴ

dt

∣∣∣
0
+

dW

dt

∣∣∣
0
− dW

dt
dt

∥∥∥∥∥
F

+
Tε√
d

∥∥∥∥∥dŴdt ∣∣∣0 − dW

dt

∣∣∣
0

∥∥∥∥∥
F

.

Here, the second term can be bound using standard concentration arguments. The first term is trickier.
We can bound the first term using arguments similar to those used to bound the difference between
the first derivatives, which will produce an additional vanilla concentration term at t = 0. We continue
iteratively for Uε ∈ N steps, until we have Uε vanilla concentrations and a factor of TUε

ε /Uε! when the
supremum is taken out of the remaining integral, and use the fact that Uε! is large enough to make the
integral sufficiently small. Technically, we derive new concentration bounds for vector-valued U- and
V-statistics (Propositions 13, 14), which may be of independent interest.

The excess risk bound below follows directly from Theorems 8 and 9, and to best of our knowledge, is
the first generalization result in this setting for arbitrary f⋆ (under f⋆-Bound).

Theorem 10 (Generalization). Suppose that all the conditions in Assumptions 2 and 3 are satisfied.
Then, on the same event as in Theorem 7, we have R(f̂Tε

)−R(f⋆) = ∥f̂Tε
− f⋆∥22 ⩽ ε.

Finally, as an immediate corollary of Theorems 7 and 10, we have the benign overfitting result.

Theorem 11 (Benign Overfitting). Suppose that all the conditions in Assumptions 2 and 3 are satisfied.
Then, on the same event as in Theorem 7, we have

Empirical Risk: R(f̂Tε) ⩽ ε and Excess Risk: R(f̂Tε)−R(f⋆) ⩽ ε.

These results align with our hypothesis: with fixed n, increasing T raises model complexity and leads
to vacuous estimation error bounds, matching the upward slope in Figure 1(b). On the other hand, by
increasing the sample size n and the two model complexities m and T simultaneously at a rate specified by
Assumptions 2 & 3, we can ensure that we stay on the trough of the U-curves in Figure 1, and eventually
reach benign overfitting.

12



0 2000 4000 6000 8000 10000
Iteration

0.3

1.0

3.2

Ri
sk

 (
lo

g-
sc

al
e)

Iteration: 140
Risk: 6.32e-01

Iteration: 2151
Risk: 3.79e-01 Iteration: 3207

Risk: 3.77e-01

Empirical Risk for n = 1000
Excess Risk for n = 1000
Empirical Risk for n = 2000
Excess Risk for n = 2000
Empirical Risk for n = 3000
Excess Risk for n = 3000

Figure 2: Risk vs. model complexity plot for Abalone dataset with Gaussian noise (mean-zero, std. dev
0.2) added to the target variable (age) during the training process. We use m = 100000.

4.3 Experiments
We support our theoretical results on two-layer ReLU NNs with experiments on real and synthetic
data. This section highlights one experiment; further results and experimental details are included in
Appendix D.8. In all our experiments, we initialize network weights as in Section 4, with the only change
being the use of gradient descent (with learning rate = 0.1) instead of gradient flow.

Our first real data experiment is with Abalone dataset (Nash et al., 1994) to predict age from d = 7
physical measurements, with standardized features and targets (zero mean, unit variance). In Figure 2,
we plot empirical (dashed) and excess (solid) risk curves against gradient descent iterations T for various
training sample sizes n, using matching colors for each n. We add mean-zero Gaussian noise with standard
deviation 0.2 to the target variable in the training data.13 As expected, empirical risk decreases with
T , with smaller n yielding stronger overfitting. Excess risk exhibits a U-shaped curve, first decreasing
then increasing. For each n, the point where the excess risk for that n crosses and remains over the
corresponding empirical risk for that n are marked by ⋆ symbols. At these crossing points, both excess
and empirical risks are equal to the Y-axis value. Notice that as n increases, this crossing point shifts
both down and to the right. For instance, with n = 1000 and 140 iterations, both empirical and excess
risks reach 0.632; increasing to n = 3000 and 3207 iterations reduces both risks to 0.377. This supports
our theory that both risks drop with enough data and suitable model complexity.

5 Conclusion
We offer a new perspective on benign overfitting and the classic risk–complexity trade-off. In traditional,
well-specified models, the excess risk can be driven down to zero with the same model by increasing the
sample size. In this case, the empirical risk will stay around the noise level, and benign overfitting will
not occur. In contrast, we hypothesize—and prove in two interesting cases—that modern models can
leverage more data to support higher complexity, achieving both low training and test error without
strong assumptions. Our analysis departs from prior approaches which focused on interpolating models,
instead deriving guarantees through a principled trade-off between data size and model capacity.

A key limitation of our work is that we provide only upper bounds supporting our hypothesis;
establishing matching lower bounds remains an open question. Additionally, our analysis is restricted to
kernel ridge regression and two-layer ReLU networks trained in the NTK regime—models that may not
fully capture the behavior of modern deep networks. However, this probably reflects broader limitations
in current deep learning theory rather than of this work specifically.

13In Appendix D.8, we present results with varying noise levels and initializations.

13



References
Ben Adlam and Jeffrey Pennington. The Neural Tangent Kernel in High Dimensions: Triple Descent and

a Multi-Scale Theory of Generalization. In International Conference on Machine Learning, pages 74–84.
PMLR, 2020.

Stefan Aeberhard and M. Forina. Wine. UCI Machine Learning Repository, 1992. DOI:
https://doi.org/10.24432/C5PC7J.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and Generalization in Overparameterized
Neural Networks, Going Beyond Two Layers. Advances in neural information processing systems, 32,
2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for Deep Learning via Over-
Parameterization. In International conference on machine learning, pages 242–252. PMLR, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-Grained Analysis of Optimization
and Generalization for Overparameterized Two-Layer Neural Networks. In International Conference on
Machine Learning, pages 322–332. PMLR, 2019.

Douglas Azevedo and Valdir Antonio Menegatto. Sharp Estimates for Eigenvalues of Integral Operators
Generated by Dot Product Kernels on the Sphere. Journal of Approximation Theory, 177:57–68, 2014.

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir
Globerson, and Daniel Soudry. On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror
Descent. In International Conference on Machine Learning, pages 468–477. PMLR, 2021.

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign Overfitting in Linear
Regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep Learning: A Statistical Viewpoint.
Acta numerica, 30:87–201, 2021.

Daniel Barzilai and Ohad Shamir. Generalization in Kernel Regression Under Realistic Assumptions. In
Forty-first International Conference on Machine Learning, 2024.

Daniel Beaglehole, Mikhail Belkin, and Parthe Pandit. On the Inconsistency of Kernel Ridgeless Regression
in Fixed Dimensions. SIAM Journal on Mathematics of Data Science, 5(4):854–872, 2023.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling Modern Machine-Learning
Practice and the Classical Bias–Variance Trade-Off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and
Statistics. Springer Science & Business Media, 2004.

Alberto Bietti and Julien Mairal. On the Inductive Bias of Neural Tangent Kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Benjamin Bowman and Guido Montufar. Implicit Bias of MSE Gradient Optimization in Underparame-
terized Neural Networks. In International Conference on Learning Representations, 2021.

Benjamin Bowman and Guido F Montufar. Spectral Bias Outside The Training Set for Deep Networks in
the Kernel Regime. Advances in Neural Information Processing Systems, 35:30362–30377, 2022.

Simon Buchholz. Kernel Interpolation in Sobolev Spaces is not Consistent in Low Dimensions. In
Conference on Learning Theory, pages 3410–3440. PMLR, 2022.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, pages 2205–2211. International Joint Conferences on Artificial Intelligence Organization,
2021.

14



Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign Overfitting in Two-Layer Convolutional
Neural Networks. Advances in neural information processing systems, 35:25237–25250, 2022.

Andrea Caponnetto and Ernesto De Vito. Optimal Rates for the Regularized Least-Squares Algorithm.
Foundations of Computational Mathematics, 7:331–368, 2007.

Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios, and David Belius. Characterizing Overfitting in
Kernel Ridgeless Regression Through the Eigenspectrum. arXiv preprint arXiv:2402.01297, 2024.

Geoffrey Chinot and Matthieu Lerasle. On the Robustness of the Minimim l2 Interpolator. Bernoulli,
2022.

Lenaic Chizat and Francis Bach. On the Global Convergence of Gradient Descent for Over-Parameterized
Models using Optimal Transport. Advances in neural information processing systems, 31, 2018.

Pete L Clark. The Instructor’s Guide to Real Induction. Mathematics Magazine, 92(2):136–150, 2019.

Alicia Curth, Alan Jeffares, and Mihaela van der Schaar. A U-Turn on Double Descent: Rethinking
Parameter Counting in Statistical Learning. In Advances in Neural Information Processing Systems,
volume 36, 2023.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient Descent Finds Global Minima
of Deep Neural Networks. In International conference on machine learning, pages 1675–1685. PMLR,
2019a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient Descent Provably Optimizes
Over-Parameterized Neural Networks. In International Conference on Learning Representations, 2019b.

Weinan E, Chao Ma, and Lei Wu. A Comparative Analysis of Optimization and Generalization Properties
of Two-Layer Neural Network and Random Feature Models under Gradient Descent Dynamics. Sci.
China Math, 2019.

Spencer Frei, Niladri S Chatterji, and Peter Bartlett. Benign Overfitting Without Linearity: Neural
Network Classifiers Trained by Gradient Descent for Noisy Linear Data. In Conference on Learning
Theory, pages 2668–2703. PMLR, 2022.

Spencer Frei, Gal Vardi, Peter Bartlett, and Nathan Srebro. Benign Overfitting in Linear Classifiers and
Leaky ReLU Networks from KKT Conditions for Margin Maximization. In The Thirty Sixth Annual
Conference on Learning Theory, pages 3173–3228. PMLR, 2023.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do Neural Networks
Outperform Kernel Methods? Advances in Neural Information Processing Systems, 33:14820–14830,
2020.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized Two-Layers
Neural Networks in High Dimension. The Annals of Statistics, 49(2):1029–1054, 2021.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A Distribution-Free Theory of Nonpara-
metric Regression. Springer Science & Business Media, 2006.

Moritz Haas, David Holzmüller, Ulrike von Luxburg, and Ingo Steinwart. Mind the Spikes: Benign
Overfitting of Kernels and Neural Networks in Fixed Dimension. arXiv preprint arXiv:2305.14077,
2023.

Itamar Harel, William M Hoza, Gal Vardi, Itay Evron, Nathan Srebro, and Daniel Soudry. Provable
Tempered Overfitting of Minimal Nets and Typical Nets. arXiv preprint arXiv:2410.19092, 2024.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, volume 2. Springer, 2009.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in High-Dimensional
Ridgeless Least Squares Interpolation. Annals of statistics, 50(2):949, 2022.

15



Dan Hathaway. Using Continuity Induction. The College Mathematics Journal, 42(3):229–231, 2011.

Roger A Horn and Charles R Johnson. Matrix Analysis. Cambridge university press, 2013.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence and General-
ization in Neural Networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Directional Convergence and Alignment in Deep Learning. Advances in
Neural Information Processing Systems, 33:17176–17186, 2020.

Hui Jin and Guido Montúfar. Implicit Bias of Gradient Descent for Mean Squared Error Regression with
Two-Layer Wide Neural Networks. Journal of Machine Learning Research, 24(137):1–97, 2023.

Nirmit Joshi, Gal Vardi, and Nathan Srebro. Noisy Interpolation Learning with Shallow Univariate ReLU
Networks. In The Twelfth International Conference on Learning Representations, 2024.

Peizhong Ju, Xiaojun Lin, and Ness Shroff. On the Generalization Power of Overfitted Two-Layer Neural
Tangent Kernel Models. In International Conference on Machine Learning, pages 5137–5147. PMLR,
2021.

Peizhong Ju, Xiaojun Lin, and Ness Shroff. On the Generalization Power of the Overfitted Three-Layer
Neural Tangent Kernel Model. Advances in Neural Information Processing Systems, 35:26135–26146,
2022.

Frederic Koehler, Lijia Zhou, Danica J Sutherland, and Nathan Srebro. Uniform Convergence of Inter-
polators: Gaussian Width, Norm Bounds and Benign Overfitting. Advances in Neural Information
Processing Systems, 34:20657–20668, 2021.

Guy Kornowski, Gilad Yehudai, and Ohad Shamir. From Tempered to Benign Overfitting in ReLU Neural
Networks. arXiv preprint arXiv:2305.15141, 2023.

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign Overfitting for Two-Layer ReLU
Networks. arXiv preprint arXiv:2303.04145, 2023.

Jianfa Lai, Manyun Xu, Rui Chen, and Qian Lin. Generalization Ability of Wide Neural Networks on R.
arXiv preprint arXiv:2302.05933, 2023.

Serge Lang. Real and Functional Analysis, volume 142. Springer Science & Business Media, 1993.

Beatrice Laurent and Pascal Massart. Adaptive Estimation of a Quadratic Functional by Model Selection.
Annals of statistics, pages 1302–1338, 2000.

A. J. Lee. U-Statistics: Theory and Practice, volume 110. CRC Press, Taylor & Francis Group, 1990.

Yunwen Lei, Rong Jin, and Yiming Ying. Stability and Generalization Analysis of Gradient Methods for
Shallow Neural Networks. Advances in Neural Information Processing Systems, 35:38557–38570, 2022.

Yicheng Li, Haobo Zhang, and Qian Lin. Kernel Interpolation Generalizes Poorly. Biometrika, 111(2):
715–722, 2024.

Zhu Li, Zhi-Hua Zhou, and Arthur Gretton. Towards an Understanding of Benign Overfitting in Neural
Networks. arXiv preprint arXiv:2106.03212, 2021.

Tengyuan Liang and Alexander Rakhlin. Just Interpolate: Kernel “Ridgeless” Regression can Generalize.
The Annals of Statistics, 48(3):1329–1347, 2020.

Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the Multiple Descent of Minimum-Norm
Interpolants and Restricted Lower Isometry of Kernels. In Conference on Learning Theory, pages
2683–2711. PMLR, 2020.

Neil Mallinar, James Simon, Amirhesam Abedsoltan, Parthe Pandit, Misha Belkin, and Preetum Nakkiran.
Benign, Tempered, or Catastrophic: Toward a Refined Taxonomy of Overfitting. Advances in Neural
Information Processing Systems, 35:1182–1195, 2022.

16



Marko Medvedev, Gal Vardi, and Nathan Srebro. Overfitting Behaviour of Gaussian Kernel Ridgeless
Regression: Varying Bandwidth or Dimensionality. arXiv preprint arXiv:2409.03891, 2024.

Song Mei and Andrea Montanari. The Generalization Error of Random Features Regression: Precise
Asymptotics and the Double Descent Curve. Communications on Pure and Applied Mathematics, 75(4):
667–766, 2022.

Song Mei, Andrea Montanari, and P Nguyen. A Mean Field View of the Landscape of Two-Layers Neural
Networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field Theory of Two-Layers Neural
Networks: Dimension-Free Bounds and Kernel Limit. In Conference on Learning Theory, pages
2388–2464. PMLR, 2019.

Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal Kernels. Journal of Machine Learning
Research, 7(12), 2006.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT
press, 2012.

Andrea Montanari and Yiqiao Zhong. The Interpolation Phase Transition in Neural Networks: Memoriza-
tion and Generalization under Lazy Training. The Annals of Statistics, 50(5):2816–2847, 2022.

Jaouad Mourtada and Lorenzo Rosasco. An elementary analysis of ridge regression with random design.
Comptes Rendus. Mathématique, 360(G9):1055–1063, 2022.

Claus Müller. Analysis of Spherical Symmetries in Euclidean Spaces, volume 129. Springer Science &
Business Media, 1998.

Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless Interpolation
of Noisy Data in Regression. IEEE Journal on Selected Areas in Information Theory, 1(1):67–83, 2020.

Vaishnavh Nagarajan and J Zico Kolter. Uniform Convergence may be Unable to Explain Generalization
in Deep Learning. Advances in Neural Information Processing Systems, 32, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
Double Descent: Where Bigger Models and More Data Hurt. Journal of Statistical Mechanics: Theory
and Experiment, 2021(12):124003, 2021.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI Machine
Learning Repository, 1994. DOI: https://doi.org/10.24432/C55C7W.

Quynh Nguyen. On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with
Linear Widths. In International Conference on Machine Learning, pages 8056–8062. PMLR, 2021.

Samet Oymak and Mahdi Soltanolkotabi. Toward Moderate Overparameterization: Global Convergence
Guarantees for Training Shallow Neural Networks. IEEE Journal on Selected Areas in Information
Theory, 1(1):84–105, 2020.

Junhyung Park and Krikamol Muandet. Regularised Least-Squares Regression with Infinite-Dimensional
Output Space. arXiv preprint arXiv:2010.10973, 2020.

Junhyung Park and Krikamol Muandet. Towards Empirical Process Theory for Vector-Valued Functions:
Metric Entropy of Smooth Function Classes. In International Conference on Algorithmic Learning
Theory, pages 1216–1260. PMLR, 2023.

Iosif Pinelis. An Approach to Inequalities for the Distributions of Infinite-Dimensional Martingales. In
Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference, pages 128–134.
Springer, 1992.

Radu Precup. Methods in Nonlinear Integral Equations. Springer Science & Business Media, 2002.

17



Alexander Rakhlin and Xiyu Zhai. Consistency of Interpolation with Laplace Kernels is a High-Dimensional
Phenomenon. In Conference on Learning Theory, pages 2595–2623. PMLR, 2019.

Calyampudi Radhakrishna Rao and Mareppalli Bhaskara Rao. Matrix Algebra and its Applications to
Statistics and Econometrics. World Scientific, 1998.

Alexander Razborov. Improved Convergence Guarantees for Shallow Neural Networks. arXiv preprint
arXiv:2212.02323, 2022.

Dominic Richards and Ilja Kuzborskij. Stability & Generalisation of Gradient Descent for Shallow Neural
Networks without the Neural Tangent Kernel. Advances in Neural Information Processing Systems, 34:
8609–8621, 2021.

Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On Learning with Integral Operators. Journal of
Machine Learning Research, 11(2), 2010.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
Advances in neural information processing systems, 30, 2017.

Robert J Serfling. Approximation Theorems of Mathematical Statistics. Wiley Series in Probability and
Statistics, 1980.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge university press, 2014.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer Science & Business Media,
2008.

Namjoon Suh, Hyunouk Ko, and Xiaoming Huo. A Non-Parametric Regression Viewpoint: Generalization
of Overparametrized Deep ReLU Network under Noisy Observations. In International Conference on
Learning Representations, 2021.

Joel A Tropp. User-Friendly Tail Bounds for Sums of Random Matrices. Foundations of computational
mathematics, 12:389–434, 2012.

Sara A van de Geer. Empirical Processes in M-Estimation, volume 6. Cambridge university press, 2000.

Gal Vardi. On the Implicit Bias in Deep-Learning Algorithms. Communications of the ACM, 66(6):86–93,
2023.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science,
volume 47. Cambridge university press, 2018.

Yunjuan Wang, Kaibo Zhang, and Raman Arora. Benign overfitting in adversarial training of neural
networks. In Forty-first International Conference on Machine Learning, 2024.

Joachim Weidmann. Linear Operators in Hilbert Spaces, volume 68. Springer New York, 1980.

Lechao Xiao, Hong Hu, Theodor Misiakiewicz, Yue M Lu, and Jeffrey Pennington. Precise Learning
Curves and Higher-Order Scaling Limits for Dot Product Kernel Regression. In Thirty-sixth Conference
on Neural Information Processing Systems (NeurIPS), 2022.

Ruichen Xu and Kexin Chen. Rethinking benign overfitting in two-layer neural networks. arXiv preprint
arXiv:2502.11893, 2025.

Xingyu Xu and Yuantao Gu. Benign Overfitting of Non-Smooth Neural Networks Beyond Lazy Training.
In International Conference on Artificial Intelligence and Statistics, pages 11094–11117. PMLR, 2023.

Greg Yang and Edward J Hu. Feature Learning in Infinite-Width Neural Networks. arXiv preprint
arXiv:2011.14522, 2020.

Yunfei Yang. Sobolev norm inconsistency of kernel interpolation. arXiv preprint arXiv:2504.20617, 2025.

18



Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A Unifying View on Implicit Bias in Training
Linear Neural Networks. arXiv preprint arXiv:2010.02501, 2020.

Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, and Zheng Ma. A Type of Generalization Error Induced
by Initialization in Deep Neural Networks. In Mathematical and Scientific Machine Learning, pages
144–164. PMLR, 2020.

Lijia Zhou, James B Simon, Gal Vardi, and Nathan Srebro. An Agnostic View on the Cost of Overfitting
in (Kernel) Ridge Regression. In International Conference on Learning Representations, 2024.

Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Francesco Locatello, and Volkan Cevher. Benign Overfitting
in Deep Neural Networks under Lazy Training. In International Conference on Machine Learning,
pages 43105–43128. PMLR, 2023.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign Overfitting of
Constant-Stepsize SGD for Linear Regression. In Conference on Learning Theory, pages 4633–4635.
PMLR, 2021.

19



A Additional Related Works
In this section, we give a more in-depth review of the literature that was omitted in the main body due to
space constraints, especially regarding the neural tangent kernel and implicit regularization.

Since neural networks are often heavily overparameterized without explicit regularization, the capacity
of the function class huge, preventing a meaningful analysis through classical uniform convergence
techniques in statistical learning theory (Nagarajan and Kolter, 2019).

There have been a plethora of works in the last few years proving the convergence of the empirical
risk to the global minimum in the NTK regime (Allen-Zhu et al., 2019b; Du et al., 2019b,a; Oymak and
Soltanolkotabi, 2020; Nguyen, 2021; Razborov, 2022), as well as generalization properties in this regime
(Arora et al., 2019; Allen-Zhu et al., 2019a; Zhang et al., 2020; Adlam and Pennington, 2020; E et al.,
2019; Ju et al., 2021; Suh et al., 2021; Ju et al., 2022; Lai et al., 2023). Moreover, many works on kernel
methods mention that their results carry over to neural networks in the NTK regime (Montanari and
Zhong, 2022; Barzilai and Shamir, 2024). These works either compare the gradient trajectory of the
neural network with the corresponding gradient trajectory of the kernel method, or compare directly with
the closed form kernel regression solution with the NTK, or compare with a random feature regression.
Our approach is fundamentally different in that we track the trajectory of the trained network against an
oracle trajectory of the same architecture, which can be designed to approximate any regression function
with arbitrary precision. We also do not impose the common assumption that the true regression function
lives in the RKHS of the NTK, and we do not require smooth activation function, but instead use the
ReLU activation, the analysis of which is made more difficult by its non-differentiability.

A pre-dominant hypothesis as to how overparametrized networks find solutions with good generalization
properties is that gradient-based optimization algorithms used to train neural networks impose an implicit
regularization effect. In the simpler settings wherein it is possible to characterize this implicit regularization
effect explicitly, we can then study uniform convergence by explicitly re-writing the hypothesis class. For
example, in linear regression or linear networks, gradient descent converges to the minimum norm solution
(Azulay et al., 2021; Yun et al., 2020; Vardi, 2023), and for classification, convergence to maximum margin
classifiers are by now well-known (Ji and Telgarsky, 2020). However, for general neural networks for
regression, including the two-layer ReLU network considered in this work, our understanding of the kind of
implicit regularization that is imposed by gradient descent is limited (Vardi, 2023, Section 4.4), although
some insights exist for the NTK regime (Bietti and Mairal, 2019; Jin and Montúfar, 2023).

There are also a few other lines of work that analyze optimization and generalization properties of
neural networks without NTKs, such as those based on stability (Richards and Kuzborskij, 2021; Lei
et al., 2022) and mean field theory (Chizat and Bach, 2018; Mei et al., 2018, 2019). While all these are
fields of active research, we are not aware of any result based on these theories implying the results that
we establish here, and in general the results across these theories are incomparable.

Our results on neural network also has connections to the line of work investigating the spectral bias
of gradient-based training (Cao et al., 2021; Bowman and Montufar, 2021, 2022). In particular, Bowman
and Montufar (2022) investigates how closely a finite-width network trained on finite samples follows
the idealized trajectory of an infinite-width trained on infinite samples, assuming smooth activation and
noiselessness. The estimation error in our case tracks how closely a finite-width network trained on finite
samples follows a network with the same architecture trained with respect to the population risk, without
assuming smoothness of the activation function while allowing noise.

A Remark on the NTK Regime. As mentioned before, we operate in the NTK regime arising from
the seminal work of Jacot et al. (2018). This regime (a.k.a. lazy training regime) informally refers to
the behavior whereby network parameters experience minimal change (in the Frobenius norm) from
their random initialization throughout training (Razborov, 2022; Montanari and Zhong, 2022). This in
turn implies that the gradient of the risk, and consequently the NTK matrix, remain relatively stable
from their initialized values. Since its introduction, the NTK theory has received a huge amount of
attention, and facilitated the analysis of neural networks in the overparameterized regime. It also receives
its share of criticism, mainly that the neurons hardly move and therefore no meaningful learning of the
features takes place (Yang and Hu, 2020). While we also share these concerns, the analysis of neural
networks outside the NTK regime is still extremely challenging, and would need more sophisticated ways
of controlling the learning trajectory. Currently, as reiterated recently by Razborov (2022), in the general
regression setting that we operate in, the evidence of overfitting/generalization outside the NTK regime

20



is either empirical or fragmentary at best. Moreover, our results establish benign overfitting, a complex
phenomenon which is challenging to analyze in almost any setting. We hope that our analysis, as a first
result on benign overfitting for finite-width, trained ReLU networks for arbitrary regression functions,
deepens our theoretical understanding of the behavior of these neural networks.

Relation between Empirical and Excess Risks. The relationship between empirical and excess risk
depends on various factors such as model complexity and sample size. In overfitting scenarios, a model
may achieve low empirical risk by fitting noise in the training data, resulting in high excess risk due to
poor generalization. Conversely, in underfitting or well-regularized models, empirical risk may exceed
excess risk if the model fails to fit the training data well yet still generalizes reasonably. In cases of benign
overfitting, both empirical and excess risks are simultaneously low, even when the model closely fits noisy
training data.

B Additional Preliminaries
In this section, we introduce some additional notations and results required in the proofs. Existing results,
for example, matrix bounds and concentration inequalities, will be quoted. We also state and prove a
couple of novel results that will be required for the proofs later, but could also be of independent interest.
The first is Lemma 12 in Appendix B.3, which extends a bound on the spectral norm of Hadamard
products of matrices (M-2) to a bound on the spectral norm of integral operators obtained by an analogous
procedure. The second are Propositions 13 and 14 in Appendix B.6, which are concentration inequalities
for (possibly infinite-dimensional) vector-valued U- and V-statistics.

B.1 Vectors and Matrices
Take any p ∈ N. For two vectors v = (v1, ..., vp)

⊤ ∈ Rp and u = (u1, ..., up)
⊤ ∈ Rp, we denote their dot

product by v · u = v1u1 + ...+ vpup, and we denote by ∥v∥2 =
√
v · v its Euclidean norm. We denote by

Sp−1 = {v ∈ Rp : ∥v∥2 = 1} the unit sphere in Rp.
Take any p, q ∈ N. We write Ip for the p× p identity matrix, and for v ∈ Rp, we write diag[v] for the

p× p diagonal matrix with diag[v]i,i = vi and diag[v]i,j = 0 for i ̸= j. For a p× q matrix M , we write
M⊤ for the transpose of M .

For p×q matrices M , M1 and M2, we denote by M1⊙M2 their Hadamard (entry-wise) product given by
[M1⊙M2]i,j = [M1]i,j [M2]i,j for i = 1, ..., p and j = 1, ..., q. We denote by ⟨M1,M2⟩F their Frobenius inner
product, i.e.,⟨M1,M2⟩F = Tr(M⊤

1 M2) =
∑p
i=1

∑q
j=1[M1]i,j [M2]i,j . We write ∥M∥2F =

∑p
i=1

∑q
j=1 M

2
ij for

its Frobenius norm. By an abuse of notation, let ∥M∥2 = supv∈Sq−1∥Mv∥2 denote its spectral norm. For
two matrices M1,M2 with dimensions p1 × q and p2 × q, we denote by M1 ∗M2 their Khatri-Rao product,
i.e., the p1p2 × q matrix given by [M1 ∗M2](i−1)p2+j,k = [M1]i,k[M2]j,k for i = 1, ..., p1, j = 1, ..., p2 and
k = 1, ..., q (Rao and Rao, 1998, p.216, (6.4.1)).

Firstly, we have the following result from (Rao and Rao, 1998, p.216, P.6.4.2) on Khatri-Rao products
of matrices:

(M1 ∗M2)
⊤(M1 ∗M2) = (M⊤

1 M1)⊙ (M⊤
2 M2) ∈ Rq×q. (M-1)

For two p× p positive semi-definite matrices M1 and M2, (Horn and Johnson, 2013, p.484, Exercise
7.5.P24(b)) tells us that

∥M1 ⊙M2∥2 ⩽ max
i∈{1,...,p}

|[M1]ii|∥M2∥2. (M-2)

B.2 Standard Distributions and Concentration Results
For µ ∈ Rp and Σ ∈ Rp×p, we denote by N (µ,Σ) the p-dimensional Gaussian distribution with mean
vector µ and covariance matrix Σ. For a set A, we denote the uniform distribution over A by Unif(A),
and by χ2(p) the χ-squared distribution with p degrees of freedom. If z ∼ χ2(p), then by we have the
following concentration bounds on z (Laurent and Massart, 2000, Section 4.1, Eqn.(4.3) and (4.4)). For
any c > 0,

P (z ⩾ p+ 2
√
pc+ 2c) ⩽ e−c (χ2-1)

21



P (z ⩽ p− 2
√
pc) ⩽ e−c. (χ2-2)

We also quote the exact form of concentration inequalities that we will use in this paper. First is Hoeffding’s
inequality (Vershynin, 2018, p.16, Theorem 2.2.6). For independent real-valued random variables z1, ..., zn
with zi ∈ [C,D] for every i = 1, ..., n, for any c > 0, we have

P

(
n∑
i=1

(zi − E[zi]) ⩾ c

)
⩽ exp

(
− 2c2

n(D − C)2

)
. (Hoeff)

We also need an extension of Hoeffding’s inequality to vector-valued random variables. Pinelis (1992)
extended Hoeffding’s inequality to martingales in Banach spaces with certain smoothness properties (see
also (Rosasco et al., 2010, Eqn. (3)) and (Steinwart and Christmann, 2008, p.217, Corollary 6.15)). The
version we quote is the corresponding simplified result for Hilbert spaces as stated in (Park and Muandet,
2023, Proposition A.4). Suppose that H is a (possibly infinite-dimensional) Hilbert space, with norm
denoted by ∥·∥H. If z, ..., zn are independent H-valued random variables with E[zi] = 0 and ∥zi∥H ⩽ Ci,
then for any c > 0,

P

(∥∥∥∥∥
n∑
i=1

zi

∥∥∥∥∥
H

⩾ c

)
⩽ 2 exp

(
− c2

4
∑n
i=1 C

2
i

)
. (V-Hoeff)

Next is McDiarmid’s inequality (Shalev-Shwartz and Ben-David, 2014, p.328, Lemma 26.4), (Vershynin,
2018, p.36, Theorem 2.9.1). Let V be some set and f : V n → R a function of n variables such that for some
C > 0, for all i ∈ {1, ..., n} and all z1, ..., zn, z′i ∈ V , we have |f(z1, ..., zn)−f(z1, ..., zi−1, z

′
i, zi+1, ..., zn)| ⩽

C. Then, if z1, ..., zn are independent random variables taking values in V , we have, for any c > 0,

P (f(z1, ..., zn)− E[f(z1, ..., zn)] ⩾ c) ⩽ exp

(
− 2c2

nC2

)
. (McD)

Finally, we recall the Matrix Chernoff inequality (Tropp, 2012, Theorem 1.1). Consider a finite sequence
M1, ...,Mm of independent, random, self-adjoint matrices of dimension p. Assume that each Mj is positive
semi-definite and has ∥Mj∥2 ⩽ R almost surely. Then denoting the minimum eigenvalue of

∑m
j=1 Mj as

λmin and that of
∑m
j=1 E[Mj ] as µmin, we have

P
(
λmin ⩽

µmin

2

)
⩽ p(

√
2e)

µmin
2R . (M-Chernoff)

For a random variable z ∈ R, we denote by ∥z∥ψ2 = inf{c > 0 : E[ez2/c2 ] ⩽ 2} the sub-Gaussian norm of z,
and we say that z is sub-Gaussian if ∥z∥ψ2 is finite (Vershynin, 2018, p.24, Definition 2.5.6). We say that
a random variable z ∈ Rp is sub-Gaussian if v · z is sub-Gaussian for all v ∈ Rp, and the sub-Gaussian
norm of z is defined as ∥z∥ψ2

= supv∈Sp−1∥z · v∥ψ2
(Vershynin, 2018, p.51, Definition 3.4.1). We say that

a random variable z ∈ Rp is isotropic if E[zz⊤] = Ip (Vershynin, 2018, p.43, Definition 3.2.1).

B.3 Functions, Operators and Reproducing Kernel Hilbert Spaces
We denote by L2(ρd−1) the space of functions f : Rd → R such that E[f(x)2] < ∞. For f, g ∈ L2(ρd−1),
by an abuse of notation, we denote their inner product as ⟨f, g⟩2 = E[f(x)g(x)], and the norm by
∥f∥2 =

√
⟨f, f⟩2. Moreover, for a linear operator K : L2(ρd−1) → L2(ρd−1), via a further abuse of

notation14, we denote its operator norm as ∥K∥2 = supf∈L2(ρd−1),∥f∥2=1∥K(f)∥2. We also denote by
L2(N ) the space of functions f : Rd → R such that E[f(w)2] < ∞, and for f, g ∈ L2(N ), define
⟨f, g⟩N = E[f(w)g(w)], ∥f∥N =

√
⟨f, f⟩N .

We extend (M-2) from matrices to general integral operators given by kernels. To the best of our
knowledge, this is a novel result.

14The ∥·∥2 notation is heavily abused, but should not cause confusion. For clarification, ∥·∥2 denotes the L2(ρd−1)-norm
for functions in L2(ρd−1), the operator norm for linear operators L2(ρd−1) → L2(ρd−1), the Euclidean norm for vectors
and the spectral norm for matrices. In the main body of the paper, ∥·∥2 was only used for L2(ρd−1) norm of functions, and
not for Euclidean norm of vectors or spectral norm of matrices.

22



Lemma 12. Suppose that K1,K2 : L2(ρd−1) → L2(ρd−1) are positive semi-definite linear operators
defined as integral operators associated with positive semi-definite kernels k1, k2 : Sd−1 × Sd−1 → R, i.e.

K1f(x) = Ex′ [k1(x,x
′)f(x′)], K2f(x) = Ex′ [k2(x,x

′)f(x′)].

Define a linear operator K : L2(ρd−1) → L2(ρd−1) by

Kf(x) = Ex′ [k1(x,x
′)k2(x,x

′)f(x′)],

i.e. the integral operator given by the tensor product kernel of k1 and k2 (Berlinet and Thomas-Agnan,
2004, p.31, Theorem 13). Then we have

∥K∥2 ⩽ ∥K2∥2 sup
x∈Sd−1

|k1(x,x)|.

Proof. Since K, K1 and K2 are self-adjoint (and therefore normal) operator, their operator norms are the
same as their largest eigenvalues. Denote by I : L2(ρd−1) → L2(ρd−1) the identity operator, i.e. the integral
operator given by the indicator kernel 1{x = x′}. Then the integral operator K ′ : L2(ρd−1) → L2(ρd−1)
given by

K ′f(x) = Ex′ [k1(x,x
′)(∥K2∥21{x = x′} − k2(x,x

′))f(x′)]

is positive semi-definite. Hence, for any f ∈ L2(ρd−1),

⟨f,K ′f⟩2 ⩾ 0

=⇒ Ex,x′ [f(x)k1(x,x
′) (∥K2∥21{x = x′} − k2(x,x

′)) f(x′)] ⩾ 0

=⇒ ∥K2∥2Ex

[
f(x)2k1(x,x)

]
⩾ ⟨f,Kf⟩2

=⇒ ∥K2∥2 sup
x∈Sd−1

|k1(x,x)|∥f∥22 ⩾ ⟨f,Kf⟩2.

Now we take the supremum of both sides over all f ∈ L2(ρd−1) with ∥f∥2 = 1. Then the right-hand side
is ∥K2∥2 supx∈Sd−1 |k1(x,x)|, and the left-hand side is precisely ∥K∥2. Hence,

∥K∥2 ⩽ ∥K2∥2 sup
x∈Sd−1

|k1(x,x)|

as required.

Suppose that κ : Rd × Rd → R is a positive semi-definite kernel, with supx∈Rd κ(x,x) ⩽ 1. By the
Moore-Aronszajn Theorem (Berlinet and Thomas-Agnan, 2004, p.19, Theorem 3), there exists a unique
reproducing kernel Hilbert space (RKHS) H with κ as its associated kernel. We denote the inner product
in this Hilbert space by ⟨·, ·⟩H , and its corresponding norm by ∥·∥H . By the reproducing property, for
every f ∈ H , we have ⟨f, κ(x, ·)⟩H = f(x).

By the boundedness of the kernel, we have H ⊆ L2(ρd−1), meaning we can define the inclusion
operator and its adjoint

ι : H → L2(ρd−1), ι∗ : L2(ρd−1) → H .

We can also find an explicit integral expression for this adjoint. See that, for g ∈ H and f ∈ L2(ρd−1),

⟨ιg, f⟩2 = Ex[g(x)f(x)] = Ex[⟨g, κ(x, ·)⟩H f(x)] = ⟨g,Ex[f(x)κ(x, ·)]⟨H ,

and so for f ∈ L2(ρd−1),
ι∗f(·) = Ex[f(x)κ(x, ·)].

The self-adjoint operator
H := ι ◦ ι∗ : L2(ρd−1) → L2(ρd−1)

has the same analytical expression as ι∗.
As a finite-sample approximation of the inclusion operator ι, we also define the (random) sampling

operator ι : H → Rn based on the (random) i.i.d. copies {xi}ni=1 of x by

ιf =
1

n
f =

1

n
(f(x1), ..., f(xn))

⊤ for f ∈ H .

23



Then the adjoint ι∗ : Rn → H can be calculated explicitly. The reproducing property gives that, for any
z = (z1, ..., zn)

⊤ ∈ Rn,

(ιf) · z =
1

n

n∑
i=1

zif(xi) =

〈
f,

1

n

n∑
i=1

ziκ(xi, ·)

〉
H

,

and so

ι∗z =
1

n

n∑
i=1

ziκ(xi, ·).

Then see that

ι ◦ ι∗z =
1

n2

(
n∑
i=1

κ(x1,xi)zi, ...,

n∑
i=1

κ(xn,xi)zi

)⊤

=
1

n2

κ(x1,x1) . . . κ(x1,xn)
...

. . .
...

κ(xn,x1) . . . κ(xn,xn)


z1

...
zn


=

1

n2
Hz,

where we denoted by H the Gram matrix of the kernel κ, i.e., the n× n matrix given by [H]ij = κ(xi,xj).

B.4 Integral Operator Technique for RKHS
A popular technique to analyze kernel regressors, called the integral operator technique (Caponnetto
and De Vito, 2007; Park and Muandet, 2020), which does not rely on uniform convergence. For a
reproducing kernel Hilbert space (RKHS) H and a function f ∈ H, let Rλ(f) = E[(f(x)− y)2] + λ∥f∥H
and Rλ(f) =

1
n

∑n
i=1(f(xi)− yi)

2 + λ∥f∥H denote the regularized population and empirical risks, and fλ

and f̂λ their respective minimizers in H. Then the excess risk of f̂λ can be written as

R(f̂λ)−R(f⋆) = E[(f̂λ(x)− f⋆(x))2] = ∥f̂λ − f⋆∥22,

where we denoted the L2-norm by ∥·∥2. We can then consider the following decomposition:

∥f̂λ − f⋆∥2 ⩽ ∥f̂λ − fλ∥2 + ∥fλ − f⋆∥2.

Here, ∥f̂λ − fλ∥2 is bounded by standard concentration (that is not uniform over the function class), and
∥fλ − f⋆∥2 can be bounded as the regularizer λ decays, and in particular, if the RKHS H is universal,
then it decays to 0.

B.5 Real Induction
We recall the principle of real induction (Hathaway, 2011) (Clark, 2019, Theorem 1).

Let a < b be real numbers. We define a subset S ⊆ [a, b] to be inductive if:

(RI1) We have a ∈ S.

(RI2) If a ⩽ c < b and c ∈ S, then [c, d] ⊆ S for some d > c.

(RI3) If a < c ⩽ b and [a, c) ⊆ S, then c ∈ S.

Then a subset S ⊆ [a, b] is inductive if and only if S = [a, b].

24



B.6 U- and V-Statistics
We recall the theory of U- and V-statistics, where we allow the associated function to be vector-valued.

Suppose that z1, ..., zn are i.i.d. random variables in Rp, and H some Hilbert space. Let Ψ : (Rp)u → H
be a symmetric function15, which we assume to be centered: Ez1,...,zu

[Ψ(z1, ..., zu)] = 0. The U-statistic
from the samples {z1, ..., zn} is (Serfling, 1980, p.172)

Un =
1(
n
u

) ∑
1⩽i1<...<iu⩽n

Ψ(zi1 , ..., ziu) ∈ H,

where the summation is over the
(
n
u

)
combinations of u distinct elements {i1, ..., iu} from {1, ..., n}.

We prove the following Hoeffding-type result for vector-valued U-statistics, which, to the best of our
knowledge, is novel. It requires significantly more work than standard results in e.g. (Serfling, 1980, p.201,
Theorem A), using martingale ideas to deal with the fact that we have vector-valued functions, in the
same vein as (Pinelis, 1992).

Proposition 13. Suppose that ∥Ψ(z1, ..., zu)∥H ⩽ C almost surely for some constant C > 0. Then for
all c > 0 and n ⩾ u, we have

P (∥Un∥H ⩾ c) ⩽ 2 exp

(
−
⌊nu⌋c

2

4C2

)
.

Proof. We use the representation of Un as an average of (dependent) averages of i.i.d. random variables,
as given in (Serfling, 1980, p.180, Section 5.1.6). Define

Ψ′(z1, ..., zn) =
1

⌊nu⌋

(
Ψ(z1, ..., zu) + Ψ(zu+1, ..., z2u) + ...+Ψ(z(⌊n

u ⌋−1)u+1, ..., z⌊n
u ⌋u)

)
.

Then Serfling (1980, p.180, Section 5.1.6) tells us that

Un =
1

n!

∑
Ψ′(zi1 , ..., zin),

where the sum is over all n! permutations {i1, ..., in} of {1, ..., n}. For all c > 0 and all λ > 0, see that

P (∥Un∥H ⩾ c) ⩽
1

cosh(λc)
E [cosh (λ∥Un∥H)] Markov’s inequality

⩽
1

cosh(λc)
E
[
cosh

(
λ

n!

∑
∥Ψ′(zi1 , ..., zin)∥H

)]
triangle inequality

⩽
1

cosh(λc)n!

∑
E [cosh (λ∥Ψ′(zi1 , ..., zin)∥H)] Jensen’s inequality. (*)

Now we will bound each of the summands E [cosh (λ∥Ψ′(zi1 , ..., zin)∥H)]. Denote by F the σ-algebra
generated by zi1 , ..., zi(⌊n

u
⌋−1)u

. We also introduce the following notations to ease the notational burden:

S =
1

⌊nu⌋

(
Ψ(zi1 , ..., ziu) + ...+Ψ(zi(⌊n

u
⌋−2)u+1

, ..., zi(⌊n
u

⌋−1)u
)
)
,

D =
1

⌊nu⌋
Ψ(zi(⌊n

u
⌋−1)u+1

, ..., zi⌊n
u

⌋u).

Then we have Ψ′(zi1 , ..., zin) = S +D. Define a stochastic process Fλ(t) indexed by t ∈ R, given by

Fλ(t) = E [cosh (λ∥S + tD∥H) | F ] .

If we define maps J1 : R → H and J2 : H → R by J1(t) = t∥D∥H and J2(h) = λ∥S + h∥H, the derivative
of Fλ with respect to t can be calculated from the chain rule as

F ′
λ(t) = E [(J2 ◦ J1)′(t) sinh (λ∥S + tD∥H) | F ] .

15This function is often called the kernel in the literature of U-statistics and V-statistics, but to avoid confusion with the
dominant use of the word kernel in this paper, we do not use the term here.

25



Now, Precup (2002, p.100, Example 7.3) tells us that (J2 ◦ J1)
′(t) = (J∗

1 ◦ J ′
2 ◦ J1)(t). We can easily

compute the adjoint J∗
1 (h) = ⟨h, D⟩H and the Fréchet derivative J ′

2(h) =
λS+λh
∥S+h∥H

, so we have

F ′
λ(t) = E

[〈
D,

λS + λtD

∥S + tD∥H

〉
H
sinh (λ∥S + tD∥H) | F

]
.

Then since E[D | F ] = 0,

F ′
λ(0) = E

[〈
D,

λS

∥S∥H

〉
H
sinh (λ∥S∥H) | F

]
= sinh (λ∥S∥H)

〈
E[D | F ],

λS

∥S∥H

〉
H

= 0.

Now we take the second derivative of Fλ. Define J3 : H → R by J3(h) = ⟨D,S + h⟩H. Then the Fréchet
derivative of J3 can easily be seen to be J ′

3(h) = D. Then using the quotient rule,

d

dt

〈
D,

λS + λtD

∥S + tD∥H

〉
H

=
λ ∥D∥2H

∥S + tD∥H
−

⟨D,S + tD⟩H
∥S + tD∥2H

〈
D,

λS + λtD

∥S + tD∥H

〉
H

⩽
λ ∥D∥2H

∥S + tD∥H
.

Then see that, using the elementary inequality sinh a ⩽ a cosh a,

F ′′
λ (t) ⩽ E

[
cosh (λ ∥S + tD∥H)

(〈
D,

λS + λtD

∥S + tD∥H

〉2

H
+ λ2 ∥D∥2H

)
| F

]
⩽ E

[
cosh (λ ∥S + tD∥H)

(
2λ2 ∥D∥2H

)
| F

]
Cauchy-Schwarz inequality

⩽ 2λ2 C2

⌊nu⌋2
E [cosh (λ ∥S + tD∥H) | F ]

= 2λ2 C2

⌊nu⌋2
Fλ(t).

Henceforth, we write ∆ = C
⌊n
u ⌋ for the simplicity of notation.

Define Gλ(t) =
1

2λ2∆2F
′′
λ (t)− Fλ(t). Then by the preceding argument, Gλ(t) ⩽ 0 for all t ∈ R. But

consider the differential equation

F ′′
λ (t) = 2λ2∆2 (Fλ(t) +Gλ(t)) , F ′

λ(0) = 0. (**)

We claim that

F (t) = Fλ(0) cosh
(√

2λ∆t
)
+

∫ √
2λ∆t

0

Gλ

(
s√
2λ∆

)
sinh

(√
2λ∆t− s

)
ds

solves the differential equation (**). Indeed, we clearly have F (0) = Fλ(0); further, we have

F ′(t) =
√
2λ∆Fλ(0) sinh

(√
2λ∆t

)
+

√
2λ∆

∫ √
2λ∆t

0

Gλ

(
s√
2λ∆

)
cosh

(√
2λ∆t− s

)
ds

which clearly satisfies F ′(0) = 0; and finally,

F ′′(t) = 2λ2∆2Fλ(0) cosh
(√

2λ∆t
)

+ 2λ2∆2

∫ √
2λ∆t

0

Gλ

(
s√
2λ∆

)
sinh

(√
2λ∆t− s

)
ds+ 2λ2∆2Gλ(t)

= 2λ2∆2 (F (t) +Gλ(t)) ,

Hence this F is the solution to (**), and so we have

Fλ(1) = Fλ(0) cosh
(√

2λ∆
)
+

∫ √
2λ∆

0

Gλ

(
s√
2λ∆

)
sinh

(√
2λ∆− s

)
ds

26



⩽ Fλ(0) cosh
(√

2λ∆
)

since Gλ ⩽ 0

⩽ Fλ(0) exp
(
λ2∆2

)
where we used the elementary inequality cosh a ⩽ exp

(
1
2a

2
)

on the last line. Now see that

E
[
cosh

(
λ ∥Ψ′(zi1 , ..., zin)∥Y

)]
= E [Fλ(1)] law of iterated expectations

⩽ exp
(
λ2∆2

)
E
[
cosh

(
λ ∥S∥Y

)]
by above

⩽ exp
(
λ2∆2

⌊n
u

⌋)
where, for the last step, we applied the same argument iteratively for 1, ..., ⌊nu⌋ − 1. Putting this back into
(*), we have that, for all c > 0 and all λ > 0,

P (∥Un∥H ⩾ c) ⩽
1

cosh(λc)
exp

(
λ2C2

⌊nu⌋

)
⩽ 2 exp

(
λ2C2

⌊nu⌋
− λc

)
using cosh a ⩾

1

2
ea

= 2 exp

(
−
⌊nu⌋c

2

4C2

)
letting λ =

⌊nu⌋c
2C2

,

as required.

Associated with U-statistics are V-statistics. The V-statistic associated with Ψ : (Rp)u → H from the
samples {z1, ..., zn} is

Vn =
1

nu

n∑
i1,...,iu=1

Ψ(zi1 , ..., ziu) ∈ H.

By exploiting the convergence of Vn to Un, we prove a concentration result for Vn.

Proposition 14. Take some t > 0. Suppose that ∥Ψ(z1, ..., zu)∥H ⩽ C almost surely for some constant
C > 0, and that 2

√
log(nu)
⌊n

c ⌋ ⩾ 1 for all c = 1, ..., n− 1. Then we have the following bound for vector-valued
V-statistics:

P

(
∥Vn∥H ⩾ 4C

√
log(nu)

⌊nu⌋

)
⩽

2

n
.

Proof. We use the following representation of V-statistics from (Lee, 1990, p.183, Theorem 1):

Vn =
1

nu

u∑
c=1

c!

{
u

c

}(
n

c

)
U (c)
n , (*)

where {
u

c

}
=

1

c!

c∑
b=0

(−1)c−b
(
c

b

)
bu

are Stirling numbers of the second kind, representing the number of ways of partitioning a set of u

elements into c non-empty subsets, and U
(c)
n are U-statistics of degree c associated with the function

Ψ(c) : (Rp)c → H given by

Ψ(c)(z1, ..., zc) =
1

c!
{
u
c

}∑Ψ(zi1 , ..., ziu)

where the sum is taken over all u-tuples (i1, ..., iu) formed from {1, ..., n} having exactly c distinct elements.
There are c!

{
u
c

}
elements in the sum, and the almost-sure bound on Ψ gives us the almost-sure bound

∥Ψ(c)(z1, ..., zc)∥H ⩽ C. Note also that Ψ(u) = Ψ, so E[U (u)
n ] = 0.

See that, for each c = 1, ..., u, using Proposition 13 and the hypothesis that 2
√

log(nu)
⌊n

c ⌋ ⩾ 1,

P

(
∥U (c)

n ∥H ⩾ 4C

√
log(nu)

⌊nu⌋

)
⩽ P

(
∥U (c)

n ∥H ⩾ 4C

√
log(nu)

⌊nc ⌋

)

27



⩽ P

(
∥U (c)

n ∥H ⩾ C + 2C

√
log(nu)

⌊nc ⌋

)

⩽ P

(
∥U (c)

n − E[U (c)
n ]∥H ⩾ 2C

√
log(nu)

⌊nc ⌋

)

⩽
2

nu
.

Putting this together with the representation (*) of Vn, we can see that

P

(
∥Vn∥H ⩾ 4C

√
log(nu)

⌊nu⌋

)

= P

(
∥Vn∥H ⩾

u∑
c=1

c!

nu

{
u

c

}(
n

c

)
4C

√
log(nu)

⌊nu⌋

)

= P

(∥∥∥∥∥
u∑
c=1

c!

nu

{
u

c

}(
n

c

)
U (c)
n

∥∥∥∥∥
H

⩾
u∑
c=1

c!

nu

{
u

c

}(
n

c

)
4C

√
log(nu)

⌊nu⌋

)

⩽
u∑
c=1

P

(
∥U (c)

n ∥H ⩾ 4C

√
log(nu)

⌊nu⌋

)

⩽
2

n
,

as required.

C Missing Details from Section 3
Theorem 2 (Overfitting). Suppose that Assumption 1(i) holds. Then there is an event with probability at
least 1− δ

2 on which R(f̂γ) ⩽ ε.

Proof. The Taylor series expansion of the kernel κ is given by

κ(x,x′) =
1

4
x · x′ +

1

2π

∞∑
r=0

(
1
2

)
r

r! + 2rr!
(x · x′)2r+2.

Hence, we have

H =
1

4
XX⊤ +

1

2π

∞∑
r=0

(
1
2

)
r

r! + 2rr!

(
XX⊤)⊙(2r+2)

=
1

4
XX⊤ +

1

2π

((
XX⊤)⊙2

+ ...
)
,

where the superscript ⊙(2r + 2) denotes the (2r + 2)-times Hadamard product. Here, XX⊤ is clearly
positive semi-definite, and by Schur product theorem (Horn and Johnson, 2013, p.479, Theorem 7.5.3),
we know that Hadamard products of positive semi-definite matrices are positive semi-definite, so each
summand is positive semi-definite. This means that, writing λmin for the minimum eigenvalue of H and
µmin for the minimum eigenvalue of XX⊤, and just considering the first term 1

4XX⊤ in the expansion,
we have λmin ⩾ 1

4µmin. But by (Vershynin, 2018, p.91, Theorem 4.6.1), the singular value of
√
dX is lower

bounded by
√
n− C

2 (
√
d+ t) with probability at least 1− 2e−t

2

for any t ⩾ 0, where C > 0 is an absolute
constant. Letting t =

√
d, the singular value of

√
dX is lower bounded by

√
n − C

√
d ⩾ 2√

5

√
n (using

Assumption 1(i)) with probability at least 1− 2e−d. This means that, with probability at least 1− 2e−d,
µmin ⩾ 4n

5d . Hence λmin ⩾ n
5d . We note that, again, 2e−d ⩽ δ

2 by Assumption 1(i).
On this event with probability at least 1− 2e−d, on which λmin ⩾ n

5d , we see that, using the above
explicit expression for f̂γ , we have

R(f̂γ) =
1

n
∥f̂γ − y∥22

28



= n

∥∥∥∥ιX(f̂γ)−
1

n
y

∥∥∥∥2
2

= n

∥∥∥∥nιX ◦ ι∗X(nιX ◦ ι∗X + γIdRn)−1

(
1

n
y

)
− 1

n
y

∥∥∥∥2
2

= n
∥∥∥(nιX ◦ ι∗X + γIdRn)−1

(γ
n
y
)∥∥∥2

2

⩽
γ2

n
∥y∥22∥(nιX ◦ ι∗X + γIdRn)−1∥2op

⩽ γ2∥(nιX ◦ ι∗X + γIdRn)−1∥2op,

where we applied (|y|-Bound) on the last line. Recall that the operator nιX ◦ ι∗X : Rn → Rn is 1
nH. Then

recalling that the minimum eigenvalue of H is λmin, we have that

∥(nιX ◦ ι∗X + γIdRn)−1∥2op =
1

(γ + 1
nλmin)2

⩽
1

(γ + 1
5d )

2
,

where λmin ⩾ n
5d by above. Hence, applying Assumption 1(i),

R(f̂γ) ⩽

(
γ

γ + 1
5d

)2

⩽ ε

as required.

Theorem 3 (Approximation). If Assumption 1(ii) holds, then we have that ∥f⋆ − fγ∥2 ⩽ 1
2

√
ε.

Proof. Recall that fε ∈ H satisfies ∥f⋆ − ιfε∥22 ⩽ ε
8 . See that

∥f⋆ − ιfγ∥22 = R(fγ)−R(f⋆)

⩽ Rγ(fγ)−R(f⋆)

= Rγ(fγ)−Rγ(fε) +Rγ(fε)−R(fε) +R(fε)−R(f⋆)

⩽ Rγ(fε)−R(fε) + ∥f⋆ − ιfε∥22

⩽ γ∥fε∥2H +
1

8
ε

⩽
1

4
ε,

where we applied Assumption 1(ii). The result is obtained by taking square roots.

Theorem 4 (Estimation). Suppose that Assumption 1(iii) holds. Then there is an event with probability
at least 1− δ

2 on which ∥fγ − f̂γ∥2 ⩽ 1
2

√
ε.

Proof. Using the closed form expressions of fγ and f̂γ , write

f̂γ − fγ = (nι∗X ◦ ιX + γIdH)−1ι∗Xy − (nι∗X ◦ ιX + γIdH)−1(nι∗X ◦ ιX + γIdH)fγ

= (nι∗X ◦ ιX + γIdH)−1(ι∗Xy − nι∗X ◦ ιXfγ − γfγ)

= (nι∗X ◦ ιX + γIdH)−1(ι∗Xy − nι∗X ◦ ιXfγ − ι∗(f⋆ − ιfγ)).

Here, we have

∥(nι∗X ◦ ιX + γIdH)−1∥op ⩽
1

γ
,

and so

∥f̂γ − fγ∥H ⩽
1

γ
∥ι∗Xy − nι∗X ◦ ιXfγ − ι∗(f⋆ − ιfγ)∥H

=
1

γ

∥∥∥∥∥ 1n
n∑
i=1

K(xi, ·)(yi − fγ(xi))− E[K(x, ·)(f⋆(x)− fγ(x))]

∥∥∥∥∥
H

.

29



Here, define random variables Z,Zi : Ω → H by Z = K(x, ·)(f⋆(x)−fγ(x)) and Zi = K(xi, ·)(yi−fγ(xi)).
Then we have E[Zi] = E[Z], and

∥f̂γ − fγ∥H ⩽
1

γ

∥∥∥∥∥ 1n
n∑
i=1

(Zi − E[Zi])

∥∥∥∥∥
H

.

Hence, we can apply vector-valued Hoeffding’s inequality (V-Hoeff). First note that, using the reproducing
property and the Cauchy-Schwarz inequality,

|fγ(xi)| = |⟨fγ ,K(xi, ·)⟩H|
⩽ ∥fγ∥H∥K(xi, ·)∥H
⩽ ∥fγ∥H
= ∥(ι∗ ◦ ι+ γIdH)−1ι∗f⋆∥H
⩽ ∥(ι∗ ◦ ι+ γIdH)−1∥op∥f⋆∥2

⩽
1

γ
,

where we applied (f⋆-Bound) on the last line. Then using (|y|-Bound), almost surely,

∥Zi∥H = |yi − fγ(xi)|∥K(xi, ·)∥H
⩽ (|yi|+ |fγ(xi)|)∥K(xi, ·)∥H

⩽ 1 +
1

γ
.

We are now ready to apply vector-valued Hoeffding’s inequality to obtain

P
(
∥f̂γ − fγ∥H ⩾

1

2

√
ε

)
⩽ P

(∥∥∥∥∥
n∑
i=1

(Zi − E[Zi])

∥∥∥∥∥
H

⩾
1

2
γn

√
ε

)

⩽ 2 exp

(
− γ2n2ε

16n(1 + 1
γ )

2

)

⩽
δ

2

as required, where we applied Assumption 1(iii).

D Missing Details from Section 4
In this section, we provide all the missing details from Section 4, including proofs.

D.1 Index of Notations
In Table 1, we collect the notations of all the objects used for the neural network part of this paper. The
left-hand column shows the analytical objects for which the weights have been integrated with respect
to the initial, independent standard Gaussian distribution, and the right-hand column shows the same
objects with dependence on the particular values of the weights W , denoted with the subscript W . Bold
symbols indicate that evaluations on the samples {(xi, yi)}ni=1 took place.

In Table 2, we collect all the short-hands used for the objects along the gradient flow trajectories. The
left-hand column shows the evolution of the quantities along the population trajectory, i.e., objects that
depend on W (t), denoted with subscript t without the hat ˆ symbol. The right-hand column shows the
evolution of the quantities along the empirical trajectory, namely those that depend on Ŵ (t), denoted
with subscript t and the hat ˆ symbol.

In Table 3, we collect the notations that indicate projections of functions onto the eigenspace spanned
by the top L eigenfunctions using the superscript L without the tilde ˜ symbol (left-hand column),
and projections of functions onto the eigenspace spanned by all but the top L eigenfunctions using the
superscript L and the tilde ˜ symbol (right-hand column).

30



Analytical Sampled Weights

Network n/a fW : Rd → R
fW (x) = 1√

m
a · ϕ(Wx)

Network evaluation n/a fW ∈ Rn
fW = (fW (x1), ..., fW (xn))

⊤

Noise variable n/a ξW = y − fW (x) : Ω → R
Noise vector n/a ξW = y − fW ∈ Rn

Error function n/a ζW = f⋆ − fW ∈ L2(ρd−1)
Error vector n/a ζW = f⋆ − fW ∈ Rn

Pre-gradient function J : Rd → L2(N ) JW : Rd → Rm
J(x)(w) = a(w)ϕ′(w · x) JW (x) = 1√

m
a⊙ ϕ′(Wx)

Pre-gradient matrix J ∈ L2(N )× Rn JW ∈ Rm×n

J(w) = a(w)ϕ′(Xw) JW = 1√
m

diag[a]ϕ′(WX⊤)

Gradient function G : Rd → L2(N )⊗ Rd GW = ∇W fW : Rd → Rm×d

G(x)(w) = J(x)(w)x GW (x) = JW (x)x⊤

Gradient matrix G ∈ L2(N )× Rd × Rn GW ∈ Rmd×n
G(w) = J(w) ∗X⊤ GW = JW ∗X⊤

NTK
κ : Rd × Rd → R κW : Rd × Rd → R

κ(x,x′) = ⟨G(x), G(x′)⟩N⊗Rd κW (x,x′) = ⟨GW (x), GW (x′)⟩F
= x · x′Ew[ϕ′(w · x)ϕ′(w · x′)] = x·x′

m ϕ′(x⊤W⊤)ϕ′(Wx′)

NTK Matrix
H ∈ Rn×n HW ∈ Rn×n

H = ⟨G,G⟩N⊗Rd = HW = G⊤
WGW =

(XX⊤)⊙ E[ϕ′(Xw)ϕ′(w⊤X⊤)] XX⊤

m ⊙ (ϕ′(XW⊤)ϕ′(WX⊤))
NTRKHS H HW

Inclusion operator ι : H → L2(ρd−1) ιW : HW → L2(ρd−1)
Sampling operator ι : H → Rn ιW : HW → Rn

NTK operator H : L2(ρd−1) → L2(ρd−1) HW : L2(ρd−1) → L2(ρd−1)
Hf(x) = E[κ(x,x′)f(x′)] HW f(x) = E[κW (x,x′)f(x′)]

Eigenvalues of H λ1 ⩾ λ2 ⩾ ... n/a
Eigenvalues of H, HW λ1 ⩾ ... ⩾ λn = λmin λW,1 ⩾ ... ⩾ λW,n = λW,min

Population Risk R : L2(ρd−1) → R, R(f) = E[(f(x)− y)2] = ∥f − f⋆∥22 +R(f⋆)
Empirical risk R : L2(ρd−1) → R, R(f) = 1

n

∑n
i=1(f(xi)− yi)

2 = 1
n∥f − y∥22

Population risk gradient n/a ∇WR(fW ) ∈ Rm×d

∇WR(fW ) = −2⟨GW , ζW ⟩2
Empirical risk gradient n/a ∇WR(fW ) ∈ Rm×d

∇WR(fW ) = − 2
nGW ξW

Table 1: Our main notations. Bold symbols indicate evaluation on the samples {(xi, yi)}ni=1 and the
subscript W denotes dependence on the weights {wj}mj=1.

31



Population Trajectory Empirical Trajectory
Network ft = fW (t) f̂t = fŴ (t)

Network Evaluation ft = fW (t) f̂t = fŴ (t)

Noise Function ξt = ξW (t) ξ̂t = ξŴ (t)

Noise vector ξt = ξW (t) ξ̂t = ξŴ (t)

Error function ζt = ζW (t) ζ̂t = ζŴ (t)

Error vector ζt = ζW (t) ζ̂t = ζŴ (t)

Pre-Gradient Function Jt = JW (t) Ĵt = JŴ (t)

Pre-Gradient Matrix Jt = JW (t) Ĵt = JŴ (t)

Gradient function Gt = GW (t) Ĝt = GŴ (t)

Gradient matrix Gt = GW (t) Ĝt = GŴ (t)

NTK κt = κW (t) κ̂t = κŴ (t)

NTK Gram Matrix Ht = HW (t) Ĥt = HŴ (t)

Inclusion Operator ιt = ιW (t) ι̂t = ιŴ (t)

Sampling Operator ιt = ιW (t) ι̂t = ιŴ (t)

NTK Operator Ht = HW (t) = ιt ◦ ι⋆t ι̂t ◦ ι̂⋆t = 1
n2 Ĥt

NTRKHS Ht = HW (t) Ĥt = HŴ (t)

Eigenvalues of Ĥt n/a λ̂t,1 ⩾ ... ⩾ λ̂t,n = λ̂t,min

Population Risk Rt = R(ft) R̂t = R(f̂t)

Empirical Risk Rt = R(ft) R̂t = R(f̂t)
Time Derivative of dW

dt = −∇WRt dŴ
dt = −∇W R̂tWeights

Time Derivative of dft
dt (x) = ⟨Gt(x),

dW
dt ⟩F

df̂t
dt (x) = ⟨Ĝt(x),

dŴ
dt ⟩F

Network = 2Htζt(x) = 2
n ⟨Ĝt(x), Ĝtξ̂t⟩F

Time Derivative of dft
dt = (∇W ft)

⊤vec
(
dWt

dt

)
df̂t
dt = (∇W f̂t)

⊤vec
(
dŴt

dt

)
Network evaluation = 2G⊤

t vec (⟨Gt, ζt⟩2) = 2
nĤtξ̂t

Table 2: Objects from Section D.2.4 with time-dependence in gradient flow. As clear from the table
entries, dependence on W (t) and Ŵ (t) are denoted by subscript t and introduction of ˆ for conciseness.

Top L eigenfunctions Remaining eigenfunctions
Network fLt =

∑L
l=1⟨ft, φl⟩2φl f̃Lt =

∑∞
l=L+1⟨ft, φl⟩2φl

Error function ζLt =
∑L
l=1⟨ζt, φl⟩2φl ζ̃Lt =

∑∞
l=L+1⟨ζt, φl⟩2φl

Squared norm of ∥ζLt ∥22 =
∑L
l=1⟨ζt, φl⟩22 ∥ζ̃Lt ∥22 =

∑∞
l=L+1⟨ζt, φl⟩22error function

Gradient function GL
t = ∇W fLt G̃L

t = ∇W f̃Lt
=
∑L
l=1⟨Gt, φl⟩2φl =

∑∞
l=L+1⟨Gt, φl⟩2φl

NTK κLt (x,x
′) = ⟨GL

t (x), G
L
t (x

′)⟩F κ̃Lt (x,x
′) = ⟨G̃L

t (x), G̃
L
t (x

′)⟩F
Population risk RLt = ∥ζLt ∥22 +R(f⋆) R̃Lt = ∥ζ̃Lt ∥22 +R(f⋆)

Risk gradient ∇WRLt = −2⟨GL
t , ζ

L
t ⟩2 ∇W R̃Lt = −2⟨G̃L

t , ζ̃
L
t ⟩2

Time derivative dWL

dt = 2⟨GL
t , ζ

L
t ⟩2 dW̃L

dt = 2⟨G̃L
t , ζ̃

L
t ⟩2of weights

Table 3: Objects from Sections D.2.3 and D.2.4 that are projected onto different eigenspaces. The
superscript L without ˜ denotes that a function is projected onto the subspace of L2(ρd−1) spanned by
the first L eigenfunctions of H, and ˜ denotes that a function is projected onto the subspace of L2(ρd−1)
spanned by all but the first L eigenfunctions of H.

32



D.2 NTK Theory of Two-Layer ReLU Networks
In this section, we present a brief development of the theory of neural tangent kernels (NTKs) specific to
our model used in Section 4.

We will consider a two-layer fully-connected neural network with ReLU activation function, where
m ∈ N is the width of the hidden layer. Specifically, write ϕ : R → R for the ReLU function defined as
ϕ(z) = max{0, z}, and with a slight abuse of notation, write ϕ : Rm → Rm for the componentwise ReLU
function, ϕ(z) = ϕ((z1, ..., zm)⊤) = (ϕ(z1), ..., ϕ(zm))⊤.

Denote by W ∈ Rm×d the weight matrix of the hidden layer, by wj ∈ Rd, j = 1, ...,m the jth

neuron of the hidden layer and a = (a1, ..., am)
⊤ ∈ Rm the weights of the output layer. Then for

x = (x1, ..., xd)
⊤ ∈ Rd, the output of the network is

fW (x) =
1√
m
a · ϕ (Wx) =

1√
m

m∑
j=1

ajϕ (wj · x) =
1√
m

m∑
j=1

ajϕ

(
d∑
k=1

Wjkxk

)
.

For weights W , we write ξW noise random variable and ζW for the error respectively:

ξW = ξfW = y − fW (x) : Ω → R, ζW = ζfW = f⋆ − fW ∈ L2(ρd−1).

Further, we have the following vectors obtained by evaluation at the points {(xi, yi)}ni=1:

fW = (fW (x1), ..., fW (xn))
⊤ ∈ Rn, ξW = ξfW = y − fW , ζW = ζfW = f⋆ − fW .

First note that, for any a ⩾ 0 and z ∈ R, ϕ(az) = aϕ(z), a property called positive homogeneity.
The ReLU function ϕ has gradient 0 for z < 0, gradient 1 for z > 0 and its gradient is undefined at

z = 0. We extend this to a left-continuous function by defining ϕ′(z) = 1{z > 0}, and treat it as the
“gradient” of ϕ. For higher-dimensional quantities, we extend ϕ′ by applying the function componentwise
again, i.e., ϕ′(z) = ϕ′((z1, ..., zm)⊤) = (ϕ′(z1), ..., ϕ

′(zm))⊤, via an abuse of notation.
We define the gradient function GW : Rd → Rm×d at W as:

[∇W fW (x)]j,k =
aj√
m
ϕ′(wj · x)xk ∈ R for j = 1, ...,m, k = 1, ..., d,

Gwj
(x) = ∇wj

fW (x) =
aj√
m
ϕ′(wj · x)x ∈ Rd for j = 1, ...,m,

GW (x) = ∇W fW (x) =
1√
m

(a⊙ ϕ′(Wx))x⊤ ∈ Rm×d.

We also define the pre-gradient function JW : Rd → Rm and pre-gradient matrix JW ∈ Rm×n at W based
on the sample X by the following:

JW (x) =
1√
m
a⊙ ϕ′(Wx), JW =

1√
m

diag[a]ϕ′(WX⊤).

Then note that GW (x) = JW (x)x⊤, and defining the gradient matrix GW := JW ∗X⊤ ∈ Rmd×n at W ,
we have

[GW ]d(j−1)+k,i = [JW ]j,iXi,k =
aj√
m
ϕ′(wj · xi)(xi)k,

i.e.,the ith column of GW is the vectorization of ∇W fW (xi), and

[∇W fW (xi)]j,k = [GW ]d(j−1)+k,i.

D.2.1 Neural Tangent Kernel

In this section, we collect various definitions and notations related to the neural tangent kernel (NTK)
(Jacot et al., 2018) of our network. The notation is consistent with those in Appendix B.3.

We define the neural tangent kernel (NTK) κW : Rd × Rd → R at W as the positive semi-definite
kernel defined with the gradient function GW = ∇W fW : Rd → Rm×d at W as the feature map:

κW (x,x′) = ⟨GW (x), GW (x′)⟩F =
x · x′

m

m∑
j=1

ϕ′(wj · x)ϕ′(wj · x′) =
x · x′

m
ϕ′(x⊤W⊤)ϕ′(Wx′).

33



We also define the neural tangent kernel Gram matrix (NTK Gram matrix) HW ∈ Rn×n at W as

HW = G⊤
WGW =

κW (x1,x1) . . . κW (x1,xn)
...

. . .
...

κW (xn,x1) . . . κW (xn,xn)

 ,

and write its eigenvalues as λW,1 ⩾ ... ⩾ λW,n = λW,min in decreasing order (with multiplicity).
Then note that, by (M-1), we have

HW = (JW ∗X⊤)⊤(JW ∗X⊤) = (XX⊤)⊙ (J⊤
WJW ) =

1

m
(XX⊤)⊙ (ϕ′(XW⊤)ϕ′(WX⊤)).

We can decompose the NTK as a sum of NTK’s corresponding to each neuron. For each j = 1, ...,m,
define κwj

: Rd × Rd → R by

κwj
(x,x′) =

x · x′

m
ϕ′(wj · x)ϕ′(wj · x′).

The NTK matrix also decomposes similarly:

Hwj =

κwj (x1,x1) . . . κwj (x1,xn)
...

. . .
...

κwj
(xn,x1) . . . κwj

(xn,xn)

 =
1

m
(XX⊤)⊙ (ϕ′(Xw⊤

j )ϕ
′(wjX

⊤)).

Then we have

κW (x,x′) =

m∑
j=1

κwj
(x,x′), HW =

m∑
j=1

Hwj
.

We denote by HW the RKHS associated with κW , and call it the neural tangent reproducing kernel
Hilbert space (NTRKHS) at W . We denote the inner product in this Hilbert space by ⟨·, ·⟩HW

and its
corresponding norm by ∥·∥HW

.
We denote the inclusion operator and its adjoint by

ιW : HW → L2(ρd−1), ι∗W : L2(ρd−1) → HW .

We also have the self-adjoint operator

HW := ιW ◦ ι⋆W : L2(ρd−1) → L2(ρd−1).

Again, we consider the neuron-level decomposition. For each j = 1, ...,m, denote by Hwj
the NTRKHS

corresponding to the NTK κwj
. Then exactly analogously, we have

ιwj
: Hwj

→ L2(ρd−1), ι⋆wj
: L2(ρd−1) → Hwj

, Hwj
= ιwj

◦ ι⋆wj
: L2(ρd−1) → L2(ρd−1),

with ∥ιwj
∥op = ∥ι⋆wj

∥op = 1√
m

and

Hwj
f(·) = ι⋆wj

f(·) = Ex[f(x)κwj
(x, ·)]

for f ∈ L2(ρd−1). Then

m∑
j=1

Hwj
f(·) = Ex

f(x) m∑
j=1

κwj
(x, ·)

 = Ex[f(x)κW (x, ·)] = HW f(·),

so

HW =

m∑
j=1

Hwj
.

We denote the sampling operator and its adjoint based on the i.i.d. copies {xi}ni=1 of x by

ιW : HW → Rn, ι∗W : Rn → HW ,

with ιW ◦ ι∗W = 1
n2HW (c.f. Appendix B.3).

34



D.2.2 Initialization and Analytical Counterparts

Recall that m is an even number; this was to facilitate the popular antisymmetric initialization trick
(Zhang et al., 2020, Section 6) (see also, for example, (Bowman and Montufar, 2022, Section 2.3) and
(Montanari and Zhong, 2022, Eqn. (34) & Remark 7(ii))).

The hidden layer weights are initialized by independent standard Gaussians via the antisymmetric
initialization scheme, [W (0)]j,k ∼ N (0, 1) for j = 1, ..., m2 and k = 1, ..., d. In other words, for each
j = 1, ..., m2 , wj ∈ Rd, we have wj ∼ N (0, Id). The output layer weights aj , j = 1, ..., m2 are initialized from
Unif{−1, 1} and are kept fixed throughout training. Then, for j = m

2 + 1, ...,m, we let wj(0) = wj−m
2
(0)

and aj = −aj−m
2
. Then we define fW = 1√

2
(fw1,...,wm/2

+ fwm/2+1,...,wm). This ensures that our network
at initialization is exactly zero, i.e.,fW (0)(x) = 0 for all x ∈ Sd−1, while being able to carry out the
analysis as if we had m independent neurons distributed as N (0, Id) at initialization. This is what we do
henceforth.

We define the analytical versions of the objects defined earlier by taking the expectation with
respect to this initialization distribution of the weights. First, define the analytical pre-gradient function
J : Rd → L2(N ) and analytical pre-gradient matrix J ∈ L2(N )× Rn as

J(x)(w) = a(w)ϕ′(w · x), J(w) = a(w)ϕ′(Xw).

Then define the analytical gradient function G : Rd → L2(N ) ⊗ Rd and the analytical gradient matrix
G ∈ L2(N )× Rd × Rn by

G(x)(w) = J(x)(w)x = a(w)ϕ′(w · x)x, G(w) = a(w)ϕ′(Xw) ∗X⊤.

Then we have, exactly analogously, the analytical NTK κ : Rd × Rd → R

κ(x,x′) = ⟨G(x), G(x′)⟩N⊗Rn = x · x′Ew∼N (0,Id)[ϕ
′(w · x)ϕ′(w · x′)] = EW∼W (0)[κW (x,x′)]

and the analytical NTK matrix H

H = ⟨G,G⟩N⊗Rd =

κ(x1,x1) . . . κ(x1,xn)
...

. . .
...

κ(xn,x1) . . . κ(xn,xn)

 ,

with its eigenvalues denoted as λ1 ⩾ ... ⩾ λn = λmin.
We also have the neuron-level decomposition again:

κ(x,x′) = mEw∼N (0,Id)[κw(x,x′)], H = mEw∼N (0,Id)[Hw]

Analogously to the development in Section D.2.1, we have a unique analytical neural tangent reproducing
kernel Hilbert space (analytical NTRKHS) H with κ as its reproducing kernel and its inner product and
norm denoted by ⟨·, ·⟩H and ∥·∥H . We also have the inclusion and sampling operators as well as their
adjoints:

ι : H → L2(ρd−1), ι⋆ : L2(ρd−1) → H , ι : H → Rn, ι⋆ : Rn → H

and denoting H := ι ◦ ι⋆ : L2(ρd−1) → L2(ρd−1), we have

Hf(·) = ι⋆f(·) = E[f(x)κ(x, ·)], ι ◦ ι⋆ = 1

n2
H.

D.2.3 Spectral Theory for Neural Tangent Kernels

Consider x,x′ ∈ Sd−1. Note that, since ∥x∥2 = ∥x′∥2 = 1, there is always an orthonormal basis of Rd
such that with respect to this basis,

x =


1
0
0
...
0

 , x′ =


cos θ
sin θ
0
...
0

 , where θ = arccos(x · x′).

35



Then writing w = (w1, w2, ..., wd) with respect to this basis, we still have that w ∼ N (0, Id) (Vershynin,
2018, p.46, Proposition 3.3.2), and so (w1, w2) ∼ N (0, I2). In polar coordinates, we have that (w1, w2) is
distributed as (r cos ζ, r sin ζ), where r2 ∼ χ2(2) and ζ ∼ Unif[−π, π]. Now see that

κ(x,x′) = x · x′Ew∼N (0,Id) [ϕ
′(x ·w)ϕ′(x′ ·w)]

= x · x′Er,ζ [1 {r cos ζ > 0}1 {r cos ζ cos θ + r sin ζ sin θ > 0}]
= x · x′Eζ [1 {cos ζ > 0}1 {cos(ζ − θ) > 0}]

=
x · x′

2π

∫ π
2

−π
2 +θ

dζ

= x · x′
(
1

2
− θ

2π

)
= x · x′

(
1

2
− arccos(x · x′)

2π

)
.

So κ is clearly a continuous function, which means that the associated RKHS H is separable (Steinwart and
Christmann, 2008, p.130, Lemma 4.33). Hence, the self-adjoint operator H = ι ◦ ι⋆ : L2(ρd−1) → L2(ρd−1)
is compact (Steinwart and Christmann, 2008, p.127, Theorem 4.27). Now we apply spectral theory for
compact, self-adjoint operators. By (Weidmann, 1980, p.133, Theorem 6.7), H has at most countably
many eigenvalues that can only cluster at 0, and each non-zero eigenvalue has finite multiplicity. Also, for
any eigenvalue λ of H with eigenvector φ, we have

λ∥φ∥22 = ⟨λφ, φ⟩2 = ⟨Hφ,φ⟩2 = ∥ι⋆φ∥22,

so λ ⩾ 0. We denote the eigenvalues in decreasing order with multiplicity by λ1 ⩾ λ2 ⩾ ... with λl → 0
as l → ∞ from above, whose corresponding eigenfunctions φl, l = 1, 2, ... form an orthonormal basis of
L2(ρd−1) (Lang, 1993, p.443, Theorem 3.1). So by Parseval’s equality (Weidmann, 1980, p.38, Theorem
3.6), for any f ∈ L2(ρd−1), we have

f =

∞∑
l=1

⟨f, φl⟩2φl, ∥f∥22 =

∞∑
l=1

⟨f, φl⟩22, Hf =

∞∑
l=1

λl⟨f, φl⟩2φl,

which obviously has, as special cases, Hφl = λlφl for all l = 1, 2, ....
For an arbitrary L ∈ N and a function f ∈ L2(ρd−1), we denote by the superscript L in fL the

projection of f onto the subspace of L2(ρd−1) spanned by the first L eigenfunctions φ1, ..., φL, and we
denote by f̃L the projection of f onto the subspace of L2(ρd−1) spanned by the remaining eigenfunctions
φL+1, φL+2, .... Then we have

fL =

L∑
l=1

⟨f, φl⟩2φl, f̃L =

∞∑
l=L+1

⟨f, φl⟩2φl, f = fL + f̃L, ∥f∥22 = ∥fL∥22 + ∥f̃L∥22.

We can also calculate the eigenvalues λl, l ∈ N explicitly. Denoting by(
1

2

)
r

=

{
1 for r = 0
1
2

(
1
2 + 1

)
...
(
1
2 + r − 1

)
=

Γ( 1
2+r)

Γ( 1
2 )

= Γ(r)

B( 1
2 ,r)

= (r−1)!

B( 1
2 ,r)

for r ⩾ 1

the rising factorial (Pochhammer symbol) of 1
2 , we expand out κ(·, ·) as a Taylor series as follows:

κ(x,x′) = x · x′
(
1

2
− arccos(x · x′)

2π

)
= x · x′

(
1

2
− 1

2π

(
π

2
−

∞∑
r=0

( 12 )r

r! + 2rr!
(x · x′)2r+1

))

=
1

4
x · x′ +

1

2π
(x · x′)2 +

1

2π

∞∑
r=1

(x · x′)2r+2

B( 12 , r)r(1 + 2r)
.

36



Recall that ρd−1 denotes the uniform distribution on Sd−1. Let us denote by σd−1 the Lebesgue measure
on the unit sphere Sd−1, and by |Sd−1| the surface area of Sd−1, so that

ρd−1 =
σd−1

|Sd−1|
.

In the following development of spherical harmonics theory, we mostly follow (Müller, 1998), though
the key idea was borrowed from (Azevedo and Menegatto, 2014).

For h = 0, 1, 2, ..., denote by Ph(d; ·) the Legendre polynomial of order h in d dimensions (Müller, 1998,
p.16, (§2.32)),

Ph(d; z) = h!Γ

(
d− 1

2

) ⌊h
2 ⌋∑

r=0

(
−1

4

)r
(1− z2)rzh−2r

r!(h− 2r)!Γ(r + d−1
2 )

,

and by Yh(d) the space of spherical harmonics of order h in d dimensions (Müller, 1998, p.16, Definition
6). Then Yh(d) has the dimension N(d, h) given by (Müller, 1998, p.28, Exercise 6)

N(d, h) =


1 for h = 0

d for h = 1
(2h+d−2)(h+d−3)!

h!(d−2)! for h ⩾ 2

.

With a slight abuse of notation, define the function κ : [−1, 1] → R by

κ(z) = z

(
1

2
− arccos(z)

2π

)
=

z

4
+

z2

2π
+

1

2π

∞∑
r=1

z2r+2

B( 12 , r)r(1 + 2r)
,

so that κ(x,x′) = κ(x · x′). This is clearly bounded, so we can apply the Funk-Hecke formula (Müller,
1998, p.30, Theorem 1) to see that, for any spherical harmonic Yh ∈ Yh(d) and any x ∈ Sd−1, we have∫

κ(x,x′)Yh(x
′)dσd−1(x

′) = µhYh(x),

where

µh = |Sd−2|
∫ 1

−1

Ph(d; z)κ(z)(1− z2)
1
2 (d−3)dz

= |Sd−2|
∫ 1

−1

Ph(d; z)z

(
1

2
− arccos(z)

2π

)
(1− z2)

1
2 (d−3)dz

= |Sd−2|
∫ 1

−1

Ph(d; z)(1− z2)
1
2 (d−3)

(
z

4
+

z2

2π
+

1

2π

∞∑
r=1

z2r+2

B( 12 , r)r(1 + 2r)

)
dz

=
|Sd−2|

4

∫ 1

−1

zPh(d; z)(1− z2)
1
2 (d−3)dz

+
|Sd−2|
2π

∫ 1

−1

z2Ph(d; z)(1− z2)
1
2 (d−3)dz

+
|Sd−2|
2π

∞∑
r=1

1

B( 12 , r)r(1 + 2r)

∫ 1

−1

z2r+2Ph(d; z)(1− z2)
1
2 (d−3)dz.

If we divide both sides of the Funk-Hecke formula by |Sd−1|, we obtain

H(Yh)(x) = Ex′ [κ(x,x′)Yh(x
′)] =

∫
κ(x,x′)Yh(x

′)dρd−1(x
′) =

µh
|Sd−1|

Yh(x).

So for each h = 0, 1, 2, ..., µh

|Sd−1| is an eigenvalue of H with multiplicity N(d, h) and eigenfunction Yh. We
now take a closer look at µh

|Sd−1| for each value of h by applying the Rodrigues rule (Müller, 1998, p.22,
Lemma 4 & p.23, Exercise 1), which tells us that, for any f ∈ C(h)[−1, 1],∫ 1

−1

f(z)Ph(d; z)(1− z2)
1
2 (d−3)dz =

(
1

2

)h Γ
(
d−1
2

)
Γ
(
h+ d−1

2

) ∫ 1

−1

f (h)(z)(1− z2)h+
1
2 (d−3)dz

37



=
B(h, d−1

2 )

2hΓ(h)

∫ 1

−1

f (h)(z)(1− z2)h+
1
2 (d−3)dz.

We also use the following fact from (Müller, 1998, p.7, (§1.35) & (§1.36)) that

|Sd−2|
|Sd−1|

=
Γ(d2 )√
πΓ(d−1

2 )
=

Γ( 12 )√
πB(d−1

2 , 1
2 )

=
1

B(d−1
2 , 1

2 )
.

h = 0: In this case, Ph(d; z) = 1, so

µ0 = |Sd−2|
∫ 1

−1

z

2
(1− z2)

1
2 (d−3) − z arccos(z)

2π
(1− z2)

1
2 (d−3)dz.

Here, the first integrand z
2 (1− z2)

1
2 (d−3) is an odd function, so the integral vanishes. For the second

integral, we do integration by parts. Let

u = arccos(z)
du

dz
= − 1√

1− z2

dv

dz
= −z(1− z2)

1
2 (d−3) v =

1

d− 1
(1− z2)

1
2 (d−1).

Then

µ0 =
|Sd−2|
2π

[
arccos(z)

d− 1
(1− z2)

1
2 (d−1)

]1
−1

+
|Sd−2|

2π(d− 1)

∫ 1

−1

(1− z2)
1
2d−1dz

=
|Sd−2|

2π(d− 1)
B

(
1

2
,
d

2

)
.

Hence,
µ0

|Sd−1|
=

B(d2 ,
1
2 )

2π(d− 1)B(d−1
2 , 1

2 )
=

Γ
(
d
2

)2
2π(d− 1)Γ

(
d+1
2

)
Γ
(
d−1
2

) .
Here, if d is even, then

µ0

|Sd−1|
=

((
d
2 − 1

)
!
)2

2
d
2 2

d
2−1

2π(d− 1)
√
π(d− 1)!!(d− 3)!!

√
π

=

(
(d− 2)!!

π(d− 1)!!

)2

,

and if d is odd, then

µ0

|Sd−1|
=

((d− 2)!!
√
π)2

2π(d− 1)2d−1(d−1
2 )!(d−3

2 )!
=

(d− 2)!!

4(d− 1)(d− 1)!!(d− 3)!!
=

(
(d− 2)!!

2(d− 1)!!

)2

.

h = 1: By applying the Rodrigues rule, we have

µ1 = |Sd−2|
∫ 1

−1

z

(
1

2
− arccos(z)

2π

)
P1(d; z)(1− z2)

1
2 (d−3)dz

=
|Sd−2|

2
B

(
d− 1

2
, 1

)∫ 1

−1

(
1

2
− arccos(z)

2π
+

z

2π
√
1− z2

)
(1− z2)

1
2 (d−1)dz.

Here, in the last term, the integrand z(1−z2)
d−1
2

2π
√
1−z2 is an odd function, so the integral vanishes. The

first term is

|Sd−2|
2

B

(
d− 1

2
, 1

)∫ 1

−1

1

2
(1− z2)

d−1
2 dz =

|Sd−2|
4

B

(
d− 1

2
, 1

)
B

(
d+ 1

2
,
1

2

)
.

The second term can be calculated by using integration by parts again:

− |Sd−2|
4π

B

(
d− 1

2
, 1

)∫ 1

−1

arccos(z)(1− z2)
d−1
2 dz

38



= −|Sd−2|
4π

B

(
d− 1

2
, 1

)
π3/2Γ

(
d+1
2

)
2Γ
(
d
2 + 1

)
= −|Sd−2|

8
B

(
d− 1

2
, 1

)
B

(
d+ 1

2
,
1

2

)
.

Hence,

µ1 =
|Sd−2|

8
B

(
d− 1

2
, 1

)
B

(
d+ 1

2
,
1

2

)
,

and so
µ1

|Sd−1|
=

B
(
d−1
2 , 1

)
B
(
d+1
2 , 1

2

)
8B
(
d−1
2 , 1

2

) =
1

4d
.

h = 2: By applying the Rodrigues rule, we have

µ2 = |Sd−2|
∫ 1

−1

P2(d; z)z

(
1

2
− arccos(z)

2π

)
(1− z2)

1
2 (d−3)dz

=
|Sd−2|B

(
2, d−1

2

)
4

∫ 1

−1

(
1

π
√
1− z2

+
z2

2π(1− z2)3/2

)
(1− z2)

1
2 (d+1)dz

=
|Sd−2|B

(
2, d−1

2

)
4

∫ 1

−1

2− z2

2π
(1− z2)

d
2−1dz

=
|Sd−2|B

(
2, d−1

2

)
8π

∫ 1

−1

(1− z2)
d
2−1 + (1− z2)

d
2 dz

=
|Sd−2|B

(
2, d−1

2

)
8π

(√
πΓ
(
d
2

)
Γ
(
d+1
2

) +

√
πΓ
(
d
2 + 1

)
Γ
(
d+3
2

) )

=
|Sd−2|B

(
2, d−1

2

)
8π

(
B

(
d

2
,
1

2

)
+B

(
d

2
+ 1,

1

2

))
.

So
µ2

|Sd−1|
=

B
(
d−1
2 , 2

)
8πB

(
d−1
2 , 1

2

) (B(d

2
,
1

2

)
+B

(
d

2
+ 1,

1

2

))
.

Odd h ⩾ 3: Recall that we have

µh =
|Sd−2|

4

∫ 1

−1

zPh(d; z)(1− z2)
1
2 (d−3)dz

+
|Sd−2|
2π

∫ 1

−1

z2Ph(d; z)(1− z2)
1
2 (d−3)dz

+
|Sd−2|
2π

∞∑
r=1

1

B( 12 , r)r(1 + 2r)

∫ 1

−1

z2r+2Ph(d; z)(1− z2)
1
2 (d−3)dz.

By applying the Rodrigues rule to the first two terms, the hth derivative vanishes, so the terms
themselves vanish. By applying the Rodrigues rule to the summation term, for r < h

2 − 1, the
derivative vanishes, and for r ⩾ h

2 − 1, the integrand becomes z2r+2−h(1− z2)h+
d−3
2 , which is an

odd function since h is odd, so the integral vanishes. So µh = 0.

Even h ⩾ 4: Again, recall that we have

µh =
|Sd−2|

4

∫ 1

−1

zPh(d; z)(1− z2)
1
2 (d−3)dz

+
|Sd−2|
2π

∫ 1

−1

z2Ph(d; z)(1− z2)
1
2 (d−3)dz

39



+
|Sd−2|
2π

∞∑
r=1

1

B( 12 , r)r(1 + 2r)

∫ 1

−1

z2r+2Ph(d; z)(1− z2)
1
2 (d−3)dz.

By applying the Rodrigues rule to the first two terms, the hth derivative vanishes, so the terms
themselves vanish. By applying the Rodrigues rule to the summation term, for r < h

2 − 1, the
derivative vanishes. By applying the Rodrigues rule to r ⩾ h

2 − 1, we have∫ 1

−1

z2r+2Ph(d; z)(1− z2)
1
2 (d−3)dz

=

(
2r + 2

h

)
h!B(h, d−1

2 )

2hΓ(h)

∫ 1

−1

z2r+2−h(1− z2)h+
1
2 (d−3)dz

=

(
2r + 2

h

)
hB(h, d−1

2 )

2h

∫ 1

0

ur+
1
2−

h
2 (1− u)h+

1
2 (d−3)du

=

(
2r + 2

h

)
hB(h, d−1

2 )

2h
B

(
r +

3

2
− h

2
, h+

d− 1

2

)
.

So

µh =
|Sd−2|h
2h+1π

B

(
h,

d− 1

2

) ∞∑
r=h

2 −1

(
2r+2
h

)
B( 12 , r)r(1 + 2r)

B

(
r +

3

2
− h

2
, h+

d− 1

2

)
.

To sum up, the eigenvalues λ1 ⩾ λ2 ⩾ ... of H are

µh
|Sd−1|

=



(
(d−2)!!
π(d−1)!!

)2
for even d and

(
(d−2)!!
2(d−1)!!

)2
for odd d for h = 0,

1
4d for h = 1,
B( d−1

2 ,2)
8πB( d−1

2 , 12 )

(
B
(
d
2 ,

1
2

)
+B

(
d
2 + 1, 1

2

))
for h = 2,

0 for odd h ⩾ 3,
hB(h, d−1

2 )
2h+1π2B( d−1

2 , 12 )

∑∞
r=h

2 −1
(2r+2

h )
B( 1

2 ,r)r(1+2r)
B
(
r + 3

2 − h
2 , h+ d−1

2

)
for even h ⩾ 4,

with multiplicities 1 for h = 0, d for h = 1 and (2h+d−2)(h+d−3)!
h!(d−2)! for h ⩾ 2.

D.2.4 Full-Batch Gradient Flow

Our goal is to optimize for the weight matrix W ∈ Rm×d using full-batch gradient flow. We perform
gradient flow with respect to both the empirical risk R and the population risk R, the latter obviously
not possible in practice.

Note that

∇fWR(fW ) = 2(fW − f⋆) = −2ζW ∈ L2(ρd−1), ∇fWR(fW ) =
2

n
(fW − y) = − 2

n
ξW ∈ Rn.

Using the chain rule and results from previous sections, we calculate the gradient of the risks as

∇wj
R(fW ) = − 2aj√

m
E [ζW (x)ϕ′(wj · x)x] ∈ Rd,

∇WR(fW ) = ⟨∇fWR,∇W fW ⟩2 = −2⟨Gw, ζW ⟩2

= − 2√
m
E[ζW (x)(a⊙ ϕ′(Wx))x⊤] ∈ Rm×d,

∇wj
R(fW ) = − 2aj

n
√
m

n∑
i=1

ξWϕ′(wj · xi)xi ∈ Rd,

∇WR(fW ) = ⟨∇fWR,∇W fW ⟩2 = − 2

n
GW ξW

= − 2

n
√
m
(diag[a]ϕ′(WX⊤)) ∗X⊤)ξW ∈ Rm×d.

40



For t ⩾ 0, denote by W (t) and Ŵ (t) the weight matrix at time t obtained by gradient flow with respect
to R and R respectively. They both start at random initialization W (0) as in Section D.2.2, and are
updated as follows:

dW

dt
= −∇WR(fW (t)) = 2⟨GW (t), ζW (t)⟩2,

dŴ

dt
= −∇WR(fŴ (t)) =

2

n
GŴ (t)ξŴ (t).

For conciseness of notation, we denote the dependence on W (t) and Ŵ (t) simply by the subscript
t and the hat .̂ So we write ft and f̂t for fW (t) and fŴ (t), ft and f̂t for fW (t) and fŴ (t), Jt and Ĵt

for JW (t) and JŴ (t), Jt and Ĵt for JW (t) and JŴ (t), Gt and Ĝt for GW (t) and GŴ (t), Gt and Ĝt for
GW (t) and GŴ (t), κt and κ̂t for κW (t) and κŴ (t), ιt and ι̂t for ιW (t) and ιŴ (t), ιt and ι̂t for ιW (t) and
ιŴ (t), Ht and Ĥt for HW (t) and HŴ (t), Ht and Ĥt for HW (t) and HŴ (t), λ̂t,1 ⩾ ... ⩾ λ̂t,n = λ̂t,min for
λŴ (t),1 ⩾ ... ⩾ λŴ (t),n = λŴ (t),min, ξt and ξ̂t for ξW (t) and ξŴ (t), ξt and ξ̂t for ξW (t) and ξŴ (t), ζt and
ζ̂t for ζW (t) and ζŴ (t), ζt and ζ̂t for ζW (t) and ζŴ (t), Rt and R̂t for R(ft) and R(f̂t), and Rt and R̂t for
R(ft) and R(f̂t) (see Table 2).

Using the chain rule, we can also calculate the time derivative of the networks ft and f̂t, as well as the
empirical evaluation f̂t of ft:

dft
dt

(·) = −dξt
dt

(·) = −dζt
dt

(·) =
〈
∇W ft(·),

dW

dt

〉
F

= 2 ⟨Gt(·), ⟨Gt, ζt⟩2⟩F
= 2Ex[⟨Gt(·), Gt(x)⟩Fζt(x)]
= 2Htζt(·) ∈ L2(ρd−1)

df̂t
dt

(·) = −dξ̂t
dt

(·) = −dζ̂t
dt

(·) =

〈
∇W f̂t(·),

dŴ

dt

〉
F

=
2

n

〈
Ĝt(·), Ĝtξ̂t

〉
F
∈ L2(ρd−1)

dft
dt

= −dξt
dt

= −dζt
dt

= (∇W ft)
⊤ vec

(
dW

dt

)
= 2G⊤

t vec (⟨Gt, ζt⟩2) ∈ Rn

df̂t
dt

= −dξ̂t
dt

= −dζ̂t
dt

=
(
∇W f̂t

)⊤
vec

(
dŴ

dt

)
=

2

n
Ĝ⊤
t Ĝtξ̂t =

2

n
Ĥtξ̂t ∈ Rn.

Define WL(0) = W (0) and W̃L(0) = 0, so that WL(0) + W̃L(0) = W (0). See that

Rt = ∥ζt∥22 +R(f⋆) = ∥ζLt ∥22 + ∥ζ̃Lt ∥22 +R(f⋆)

where we used the ζLt =
∑L
l=1⟨ζt, φl⟩2φl and ζ̃Lt =

∑∞
l=L+1⟨ζt, φl⟩2φl notation from Section D.2.3. We

denote the gradients of fLt and f̃Lt with respect to the weights as

GL
t = ∇W fLt , G̃L

t = ∇W f̃Lt .

Then we can see that

GL
t = ∇W

(
L∑
l=1

⟨ft, φl⟩2φl

)
=

L∑
l=1

⟨∇W ft, φl⟩2φl =
L∑
l=1

⟨Gt, φl⟩2φl

so that

κLt (x,x
′) = ⟨GL

t (x), G
L
t (x

′)⟩F

=

〈
L∑
l=1

⟨Gt, φl⟩2φl(x),
L∑
l′=1

⟨Gt, φl′⟩2φl′(x′)

〉
F

=

L∑
l,l′=1

φl(x)φl′(x
′) ⟨⟨Gt, φl⟩2, ⟨Gt, φl′⟩2⟩F

41



We also denote the projected risks as

RLt = ∥ζLt ∥22 +R(f⋆) R̃Lt = ∥ζ̃Lt ∥22 +R(f⋆),

so that their gradients with respect to the weights are

∇WRLt = −2⟨GL
t , ζ

L
t ⟩2, ∇W R̃Lt = −2⟨G̃L

t , ζ̃
L
t ⟩2

and we have
∇WRt = ∇WRLt +∇W R̃Lt .

Then we perform gradient flow on each of the projections as follows:

dWL

dt
= −∇WRLt = 2⟨GL

t , ζ
L
t ⟩2,

dW̃L

dt
= −∇W R̃Lt = 2⟨G̃L

t , ζ̃
L
t ⟩2,

Then by using the decomposition of ∇WRt = ∇WRLt +∇W R̃Lt from above, we can see that, for t ⩾ 0,

W (t) =

∫ t

0

dW

dt
dt =

∫ t

0

dWL

dt
+

dW̃L

dt
dt = WL(t) + W̃L(t).

For individual neurons in WL(t), write wL
j (t), and likewise w̃L

j (t) for individual neurons in W̃L(t).
We define κLt : Rd × Rd → R by

κLt (x,x
′) = ⟨GL

t (x), G
L
t (x

′)⟩F.

Moreover, we denote the RKHS associated with κLt as H L
t , the associated inclusion operator as ιLt :

H L
t → L2(ρd−1) and the associated operator as

HL
t = ιLt ◦ (ιLt )⋆ : L2(ρd−1) → L2(ρd−1), HL

t f(x) = Ex′ [κLt (x,x
′)f(x′)].

It must be stressed that fLt =
∑L
l=1⟨ft, φl⟩2φl is not necessarily the same as fWL(t). Similarly, GL

t , κLt
and HL

t are not necessarily the same as ∇W fWL(t), κWL(t) and HWL(t).

D.3 High Probability Results
Before we dive into our proofs, we first remark that our results are high-probability results, and the
randomness comes from the sampling randomness of the data {xi, yi}ni=1 (or X and y) and the random
initialization of the neurons {wj(0)}mj=1 (or the weight matrix W (0)). Since we are performing full-batch,
deterministic gradient flow, once those are fixed, the trajectory of gradient flow is completely deterministic.
Hence, it is often done in the literature that first all the results that hold on a single high-probability
event are proved, and then those that follow in a deterministic way on this high-probability event are
proved. In the literature, this is variously called “quasi-randomness” (Razborov, 2022, Section 3.1), a
“good run” (Frei et al., 2022, Definition 4.4) or a “good event” (Xu and Gu, 2023, Section 4.1).

We also collect some high-probability results in this section. Then, overfitting, approximation and
estimation results in Appendix D.4, Appendix D.5 and Appendix D.6 are proved in a deterministic fashion
conditioned on the high-probability event of this section. Each of the high-probability results Lemmas 16,
17 and 18 will yield a (high-probability) sub-event of the one produced by the previous result, and they
will be denoted as E1 ⊇ E2 ⊇ E3. Our final event on which all of our result hold will have probability
1− δ, where δ is the failure probability.

We start by collecting some preliminary non-random results that will be used throughout.

Lemma 15. We have the following results.

(i) The operator norm of H : L2(ρd−1) → L2(ρd−1) is given by

∥H∥2 = λ1 =
1

4d
.

42



(ii) For any weights W ∈ Rm×d, we have

∥HW ∥2 ⩽
1

2d
, and ∥Hwj

∥2 ⩽
1

2md
.

As a result, we also have, for all t ⩾ 0,

∥∇wj
Rt∥2 ⩽

√
2

md
∥ζt∥2.

(iii) We have

Ex,x′
[
(x · x′)2

]
=

1

d
.

Proof. (i) Recall from Section D.2.3 that the eigenvalues λ1 ⩾ λ2 ⩾ ... of H are

µh
|Sd−1|

=



(
(d−2)!!
π(d−1)!!

)2
for even d and

(
(d−2)!!
2(d−1)!!

)2
for odd d h = 0,

1
4d h = 1,
B( d−1

2 ,2)
8πB( d−1

2 , 12 )

(
B
(
d
2 ,

1
2

)
+B

(
d
2 + 1, 1

2

))
h = 2,

0 odd h ⩾ 3,
hB(h, d−1

2 )
2h+1π2B( d−1

2 , 12 )

∑∞
r=h

2 −1
(2r+2

h )
B( 1

2 ,r)r(1+2r)
B
(
r + 3

2 − h
2 , h+ d−1

2

)
even h ⩾ 4,

with multiplicities 1 for h = 0, d for h = 1 and (2h+d−2)(h+d−3)!
h!(d−2)! for h ⩾ 2.

Clearly, the values of µh

|Sd−1| for even h ⩾ 2 are smaller than those for h = 0 and h = 1. Moreover,

see that, when d is odd, using the elementary inequality a
a+1 <

√
a
a+2 ,

(d− 2)!!

(d− 1)!!
=

d− 2

d− 1

d− 4

d− 3
...
3

4

1

2
<

√
d− 2

d

√
d− 4

d− 2
...

√
3

5

√
1

3
=

1√
d
,

and when d is even, using the same elementary inequality,

(d− 2)!!

π(d− 1)!!
=

1

π

d− 2

d− 1

d− 4

d− 3
...
4

5

2

3
<

1

π

√
d− 2

d
...

√
4

6

√
2

4
<

1

2
√
d
.

Hence, we always have that µ0

|Sd−1| <
µ1

|Sd−1| , and so λ1 = ... = λd =
1
4d , and λd+1 = µ0

|Sd−1| .

Finally, since H is a self-adjoint (and therefore a normal) operator on L2(ρd−1), the operator norm
of H coincides with the spectral radius (Weidmann, 1980, p.127, Theorem 5.44), meaning that

∥H∥2 = λ1 =
1

4d
.

(ii) We define linear operators Ξ, Ξ̃ : L2(ρd−1) → L2(ρd−1) by

Ξ(f)(x) = Ex′ [x · x′f(x′)], Ξ̃(f)(x) =
1

m
Ex′ [x · x′f(x′)].

Notice that HW is given as the integral operator of the NTK κW , which in turn is a tensor
product of the dot product kernel, which is the associated kernel of Ξ, and the kernel (x,x′) 7→
1
m

∑m
j=1 ϕ

′(wj ·x)ϕ′(wj ·x′). Since the second kernel is bounded above by 1, Lemma 12 tells us that

∥HW ∥2 ⩽ ∥Ξ∥2, ∥Hwj
∥2 ⩽ ∥Ξ̃∥2.

Now, since Ξ and Ξ̃ are self-adjoint (and therefore normal) operators, their operator norms are equal
to their largest eigenvalues. We now use the Funk-Hecke formula (Müller, 1998, p.30, Theorem 1)
again to see that the eigenvalues τh and τ̃h of Ξ and Ξ̃ are given by

τh =
|Sd−2|
|Sd−1|

∫ 1

−1

Ph(d; z)z(1− z2)
1
2 (d−3)dz.

43



Here, note that P0(d; z) = 1, so for h = 0, the integrand is an odd function, which gives τ0 = 0.
Moreover, using the Rodrigues rule, we can see that τh = 0 for h ⩾ 2, because the hth derivative of
z is zero. Hence, using the Rodrigues rule, we can see that

∥HW ∥2 ⩽ ∥Ξ∥2
= τ1

=
|Sd−2|
|Sd−1|

∫ 1

−1

z2(1− z2)
1
2 (d−3)dz

=
|Sd−2|
2|Sd−1|

B

(
d− 1

2
, 1

)
B

(
d+ 1

2
,
1

2

)
⩽

1

2d
.

Similarly, we have

∥Hwj
∥2 ⩽ ∥Ξ̃∥2 = τ̃1 =

1

2md
.

Applying the Cauchy-Schwarz inequality,

∥∇wj
Rt∥2 = 2∥⟨Gwj(t), ζt⟩2∥2

= 2∥E[Gwj(t)(x)ζt(x)]∥2

= 2
√

Ex,x′
[(
Gwj(t)(x) ·Gwj(t)(x

′)
)
ζt(x)ζt(x′)

]
= 2
√〈

ζt, Hwj(t)ζt
〉
2

⩽ 2∥ζt∥2
√

∥Hwj(t)∥2

⩽

√
2

md
∥ζt∥2

as required.

(iii) See that
√
dx and

√
dx′ are independent isotropic random vectors (Vershynin, 2018, p.45, Exercise

3.3.1), so by (Vershynin, 2018, p.44, Lemma 3.2.4), we have that

Ex,x′ [(x · x′)2] =
1

d2
Ex,x′ [((

√
dx) · (

√
dx′))2] =

1

d2
d =

1

d
,

as required.

D.3.1 Randomness due to Weight Initialization

We first collect a few results that weights at initialization satisfy with high probability. In these results,
the only randomness comes from the weight initialization.

Lemma 16. If Assumption 2(i) is satisfied, there is an event E1 with P(E1) ⩾ 1 − δ
3 on which the

following happen simultaneously.

(i) The initial weights are upper bounded in norm: for all j = 1, ...,m,

∥wj(0)∥2 ⩽
√

5d+ 4 logm.

(ii) The initial NTK operator concentrates to the analytical NTK operator:

∥H0 −H∥2 ⩽
5

2

√
log(2m)

dm
.

44



•
0

x

Hdx

H̃dx

•
0

x′

Hdx′

H̃dx′

•
0

Gdx,x′

Figure 3: In the third picture, the shaded region represents Gdx,x′ = Hdx ∩Hdx′ , and thus contain those w
such that gx,x′(w) = ϕ′(x ·w)ϕ′(w · x′) = 1.

(iii) We have:

sup
x∈Sd−1

∣∣∣∣∣
{
j ∈ {1, ...,m} : ∃v ∈ Rd with v · x = 0 and ∥v −wj(0)∥2 ⩽ 32

√
d

m

}∣∣∣∣∣
⩽

√
dm(34 +

√
logm).

(iv) We have

sup
x∈Sd−1

∣∣∣∣∣
{
j ∈ {1, ...,m} : ∃v ∈ Rd with v · x = 0 and ∥v −wj(0)∥2 ⩽

2
√
2√

mdλε

}∣∣∣∣∣
⩽

√
m√
dλε

(3
√
2 +

√
logm).

Proof. (i) Note that, for each j = 1, ...,m, ∥wj(0)∥22 ∼ χ2(d), so by (χ2-1), for any c > 0,

P
(
∥wj(0)∥22 ⩾ d+ 2

√
dc+ 2c

)
⩽ e−c.

Letting c = d+ logm and taking the square root, we have

P
(
∥wj(0)∥2 ⩾

√
5d+ 4 logm

)
⩽ P

(
∥wj(0)∥2 ⩾

√
3d+ 2 logm+ 2

√
d2 + d logm

)
⩽ e−d−logm

=
e−d

m
,

and taking the union bound over the neurons, we have

P
(
∥wj(0)∥2 ⩾

√
5d+ 4 logm for some j ∈ {1, ...,m}

)
⩽ e−d.

We note that e−d ⩽ δ
12 by Assumption 2(i).

(ii) We start by defining, for each pair x,x′ ∈ Sd−1, a function gx,x′ : Rd → R as

gx,x′(w) = ϕ′(x ·w)ϕ′(w · x′) = 1{x ·w > 0}1{w · x′ > 0}.

The intuition behind the functions gx,x′ is the following (see Figure 3). For each x ∈ Sd−1, Rd is
cut into two disjoint halves by the hyperplane through the origin to which x is a normal, which
we denote by Hdx and H̃dx with x ∈ Hdx, and with H̃dx containing the hyperplane. If w ∈ Hdx, then
ϕ′(x ·w) = 1, and if w ∈ H̃dx, then ϕ′(x ·w) = 0. For each pair x,x′ ∈ Sd−1, the function gx,x′

makes two such cuts, and thus is given by

45



gx,x′(w) =

{
1 if w ∈ Hdx ∩Hdx′ =: Gdx,x′

0 if w ∈ H̃dx ∪ H̃dx′
.

So gx,x′ takes value 1 for at most half of Rd (if x = x′) and takes value 0 for the rest of Rd. For
example, if x · x′ = −1, i.e.,x and x′ are diametrically opposite on Sd−1, then Gdx,x′ = ∅ and gx,x′ is
the zero function. We also define the following collections of sets:

H :=
{
Hdx : x ∈ Sd−1

}
G :=

{
Gdx,x′ : x,x′ ∈ Sd−1

}
.

So H is the collection of half-spaces in Rd, and G is the collection of intersections of two half-spaces
in Rd.
The growth function ΠG : N → N of G is defined as (Mohri et al., 2012, p.38, Definition 3.3), (van de
Geer, 2000, p.39, Definition 3.2)

ΠG(m) = max
w1,...,wm∈Rd

∣∣{(gx,x′(w1), ..., gx,x′(wm)) : x,x′ ∈ Sd−1
}∣∣

= max
w1,...,wm∈Rd

|{G ∩ {w1, ...,wm} : G ∈ G}| .

The growth function ΠH : N → N of H is similarly defined. Then by (van de Geer, 2000, p.40,
Example 3.7.4c), we have

ΠH(m) ⩽ 2d
(
m

d

)
⩽ (2m)d,

and noting that G = {H1 ∩H2 : H1,H2 ∈ H}, (Mohri et al., 2012, p.57, Exercise 3.15(a)) tells us
that

ΠG(m) ⩽ (ΠH(m))2 ⩽ (2m)2d.

Now, we let {ςj}mj=1 be a Rademacher sequence, i.e.,a sequence of independent random variables
ςj with P(ςj = 1) = P(ςk = −1) = 1

2 . Then using an argument based on Massart’s Lemma (Mohri
et al., 2012, p.40, Corollary 3.1), we can bound the Rademacher complexity by

Eςj ,wj(0),j=1...,m

sup
x,x′

1

m

m∑
j=1

ςjgx,x′(wj(0))

 ⩽

√
2 logΠG(m)

m
⩽ 2

√
d log(2m)

m
. (*)

We also define a function F : (Rd)m → R by

F (w1, ...,wm) = sup
x,x′∈Sd−1

 1

m

m∑
j=1

gx,x′(wj)− Ew∼N (0,Id)[gx,x′(w)]

 .

Then for any j′ ∈ {1, ...,m} and any w1, ...,wm,w′
j′ , we have

F (w1, ...,wm) = sup
x,x′∈Sd−1

 1

m

m∑
j=1

gx,x′(wj)−
1

m

∑
j ̸=j′

gx,x′(wj)−
1

m
gx,x′(w′

j′)

+
1

m

∑
j ̸=j′

gx,x′(wj) +
1

m
gx,x′(w′

j′)− Ew∼N (0,Id)[gx,x′(w)]


⩽ F (w1, ...,wj′−1,w

′
j′ ,wj′+1, ...,wm)

+
1

m
sup

x,x′∈Sd−1

{
gx,x′(wj′)− gx,x′(w′

j′)
}

⩽ F (w1, ...,wj′−1,w
′
j′ ,wj′+1, ...,wm) +

1

m
,

since gx,x′(w) ∈ {0, 1}. So

|F (w1, ...,wm)− F (w1, ...,wj′−1,w
′
j′ ,wj′+1, ...,wm)| ⩽ 1

m
.

46



Hence, we can apply McDiarmid’s inequality (McD) to see that, for any c > 0,

P (F (w1(0), ...,wm(0)) ⩾ E[F (w1(0), ...,wm(0))] + c) ⩽ e−2c2m. (**)

Now, to bound E[F (w1(0), ...,wm(0))], we use symmetrization. Denote by F the σ-algebra generated
by w1(0), ...,wm(0). Suppose we had another set w′

1, ...,w
′
m of independent copies from the

distribution N (0, Id). Then for each pair x,x′ ∈ Sd−1,

E

 1

m

m∑
j=1

gx,x′(wj(0)) | F

 =
1

m

m∑
j=1

gx,x′(wj(0))

E

 1

m

m∑
j=1

gx,x′(w′
j) | F

 = Ew[gx,x′(w)],

so
1

m

m∑
j=1

gx,x′(wj(0))− Ew[gx,x′(w)] = E

 1

m

m∑
j=1

{
gx,x′(wj(0))− gx,x′(w′

j)
}
| F

 .

Hence

E [F (w1(0), ...,wm(0))] = E

sup
x,x′

 1

m

m∑
j=1

gx,x′(wj(0))− Ew∼N (0,Id)[gx,x′(w)]




= E

sup
x,x′

E

 1

m

m∑
j=1

{
gx,x′(wj(0))− gx,x′(w′

j)
}
| F


⩽ E

E
sup
x,x′

1

m

m∑
j=1

{
gx,x′(wj(0))− gx,x′(w′

j)
}
| F


= E

sup
x,x′

1

m

m∑
j=1

{
gx,x′(wj(0))− gx,x′(w′

j)
} ,

where the last line follows from the law of iterated expectations. Then noting that

sup
x,x′

1

m

m∑
j=1

{
gx,x′(wj(0))− gx,x′(w′

j)
}

and sup
x,x′

1

m

m∑
j=1

ςj
{
gx,x′(wj(0))− gx,x′(w′

j)
}

have the same distribution, continuing our argument from above,

E [F (w1(0), ...,wm(0))] ⩽ E

sup
x,x′

1

m

m∑
j=1

ςj
{
gx,x′(wj(0))− gx,x′(w′

j)
}

⩽ E

sup
x,x′

1

m

m∑
j=1

ςjgx,x′(wj(0)) + sup
x,x′

1

m

m∑
j=1

ςjgx,x′(w′
j)


= 2E

sup
x,x′

1

m

m∑
j=1

ςjgx,x′(wj(0))


⩽ 4

√
d log(2m)

m
,

by the bound in (*). Hence, continuing from (**), for any c > 0,

P

(
F (w1(0), ...,wm(0)) ⩾ 4

√
d log(2m)

m
+ c

)
⩽ e−2c2m.

47



Letting c =
√

d log(2m)
m ,

P

(
F (w1(0), ...,wm(0)) ⩾ 5

√
d log(2m)

m

)
⩽ e−2d log(2m) =

1

(2m)2d
.

We note that 1
(2m)2d

⩽ e−d ⩽ δ
12 by Assumption 2(i).

Now we assume we are on the above high probability event on which F (w1(0), ...,wm(0)) ⩽

5
√

d log(2m)
m . We use the same linear operator Ξ as in the proof of Lemma 15(ii), which we recall to

be
Ξ(f)(x) = Ex′ [x · x′f(x′)]

and we also recall that ∥Ξ∥2 ⩽ 1
2d . Applying Lemma 12, we see that

∥H0 −H∥2 ⩽
1

2d
sup

x∈Sd−1

 1

m

m∑
j=1

gx,x(wj(0))− Ew∼N (0,Id)[gx,x(w)]


⩽

1

2d
F (w1(0), ...,wm(0))

⩽
5

2

√
log(2m)

dm
,

as required.

(iii) We use the net argument. We know that, by (Vershynin, 2018, p.78, Corollary 4.2.13), the
2√

5d+4 logm

√
d
m -covering number of Sd−1 is upper bounded by

(√
m√
d

√
5d+ 4 logm+ 1

)d
. Let Ĉ be

such a cover of Sd−1. Also, for each z ∈ Sd−1, define R̂z ⊂ Rd by

R̂z =

{
x ∈ Rd : |x · z| ⩽ 34

√
d

m

}
.

Note that, for each j = 1, ...,m and each z ∈ Ĉ, the real-valued random variable z · wj(0) has
distribution N (0, 1), since ∥z∥2 = 1 and wj(0) ∼ N (0, Id). So

P
(
wj(0) ∈ R̂z

)
= P

(
|z ·wj(0)| ⩽ 34

√
d

m

)
=

1√
2π

∫ 34
√

d
m

34
√

d
m

e−
z2

2 dz ⩽ 34

√
d

m
.

Denote by Ĵz the set of neurons that are in R̂z. This is a random set, and we clearly have

Ĵz =

m∑
j=1

1R̂z
(wj(0)).

By Hoeffding’s inequality (Hoeff), for any c > 0, we have

P
(
Ĵz ⩾ 34

√
dm+ c

)
⩽ P

Ĵz −
m∑
j=1

P
(
wj(0) ∈ R̂z

)
⩾ c

 ⩽ exp

(
−2c2

m

)
.

Letting c =
√
md logm, we have

P
(
Ĵz ⩾

√
dm
(
34 +

√
logm

))
⩽

1

m2d
.

We take the union bound over all z ∈ Ĉ:

P
(
there exists z ∈ Ĉ such that Ĵz ⩾

√
dm
(
34 +

√
logm

))
48



⩽

(√
m√
d

√
5d+ 4 logm+ 1

)d
1

m2d

⩽ e−d

⩽
δ

12
,

where the last line follows by Assumption 2(i).

Now suppose that we are on this high-probability event on which there does not exist z ∈ Ĉ such
that Ĵz ⩾

√
dm(34 +

√
logm). Then for any x ∈ Sd−1, denote by x0 the element in the net Ĉ

such that ∥x− x0∥2 ⩽ 2√
5d+4 logm

√
d
m . Then for any wj(0) /∈ R̂z, noting that part (i) tells us that

∥wj(0)∥2 ⩽
√
5d+ 4 logm, we have

|x ·wj(0)| ⩾ |x0 ·wj(0)| − |(x− x0) ·wj(0)| > 34

√
d

m
− 2

√
d

m
= 32

√
d

m
.

Hence, for any x ∈ Sd−1, we have at most
√
dm(34+

√
logm) neurons that satisfy |x·wj(0)| ⩽ 32

√
d
m .

See that, for each x ∈ Sd−1 and each j = 1, ...,m, for there to exist a v ∈ Rd such that v · x = 0 and
∥v −wj(0)∥2 ⩽ 32

√
d
m , a necessary condition is that |x ·wj(0)| ⩽ 32

√
d
m , since

|x ·wj(0)| ⩽ |(wj(0)− v) · x|+ |v · x| ⩽ ∥wj(0)− v∥2 ⩽ 32

√
d

m
.

Thus

sup
x∈Sd−1

∣∣∣∣∣
{
j ∈ {1, ...,m} : ∃v ∈ Rd with v · x = 0 and ∥v −wj(0)∥2 ⩽ 32

√
d

m

}∣∣∣∣∣
⩽

√
dm(34 +

√
logm).

(iv) We follow a similar argument as in part (iii). We know that the 2√
5d+4 logm

√
2√

mdλε
-covering number

of Sd−1 is upper bounded by
(√

mdλε√
2

√
5d+ 4 logm+ 1

)d
. Let C be such a cover of Sd−1. Also, for

each z ∈ Sd−1, define Rz ⊂ Rd by

Rz =

{
x ∈ Rd : |x · z| ⩽ 3

√
2√

mdλε

}
.

Note that, for each j = 1, ...,m and each z ∈ C, the real-valued random variable z · wj(0) has
distribution N (0, 1), since ∥z∥2 = 1 and wj(0) ∼ N (0, Id). So

P (wj(0) ∈ Rz) = P

(
|z ·wj(0)| ⩽

3
√
2√

mdλε

)
=

1√
2π

∫ 3
√

2√
mdλε

3
√

2√
mdλε

e−
z2

2 dz ⩽
3
√
2√

mdλε
.

Denote by Jz the set of neurons that are in Rz. This is a random set, and we clearly have

Jz =

m∑
j=1

1Rz(wj(0)).

By Hoeffding’s inequality (Hoeff), for any c > 0, we have

P

(
Jz ⩾

3
√
2
√
m√

dλε
+ c

)
⩽ P

Jz −
m∑
j=1

P (wj(0) ∈ Rz) ⩾ c

 ⩽ exp

(
−2c2

m

)
.

49



Letting c =
√
m logm√
dλε

, we have

P
(
Jz ⩾

√
m√
dλε

(
3
√
2 +

√
logm

))
⩽

1

m
2

dλ2
ε

.

We take the union bound over all z ∈ C:

P
(

there exists z ∈ C such that Jz ⩾

√
m√
dλε

(
3
√
2 +

√
logm

))

⩽

(√
mdλε√
2

√
5d+ 4 logm+ 1

)d
1

m
2

dλ2
ε

⩽ e−d

⩽
δ

12
,

where the last line follows by Assumption 2(i).
Now suppose that we are on this high-probability event on which there does not exist z ∈ C such
that Jz ⩾

√
m√
dλε

(3
√
2 +

√
logm). Then for any x ∈ Sd−1, denote by x0 the element in the net S

such that ∥x − x0∥2 ⩽ 2√
5d+4 logm

√
2√

mdλε
. Then for any wj(0) /∈ Rz, noting that part (i) tells us

that ∥wj(0)∥2 ⩽
√
5d+ 4 logm, we have

|x ·wj(0)| ⩾ |x0 ·wj(0)| − |(x− x0) ·wj(0)| >
3
√
2√

mdλε
−

√
2√

mdλε
=

2
√
2√

mdλε
.

Hence, for any x ∈ Sd−1, we have at most
√
m√
dλε

(3
√
2 +

√
logm) neurons that satisfy |x ·wj(0)| ⩽

2
√
2√

mdλε
. See that, for each x ∈ Sd−1 and each j = 1, ...,m, for there to exist a v ∈ Rd such that

v · x = 0 and ∥v −wj(0)∥2 ⩽ 2
√
2√

mdλε
, a necessary condition is that |x ·wj(0)| ⩽ 2

√
2√

mdλε
, since

|x ·wj(0)| ⩽ |(wj(0)− v) · x|+ |v · x| ⩽ ∥wj(0)− v∥2 ⩽
2
√
2√

mdλε
.

Thus

sup
x∈Sd−1

∣∣∣∣∣
{
j ∈ {1, ...,m} : ∃v ∈ Rd with v · x = 0 and ∥v −wj(0)∥2 ⩽

2
√
2√

mdλε

}∣∣∣∣∣
⩽

√
m√
dλε

(3
√
2 +

√
logm).

Now, the events of parts (i), (ii), (iii) and (iv) each have probability at least 1− δ
12 , so by union bound,

the event E1 on which all of them happen simultaneously satisfies P(E1) ⩾ 1− δ
3 , as required.

D.3.2 Randomness due to Sampling of Data

We now state and prove a few results that the samples satisfy with high probability. In these results, the
only randomness comes from the random sampling of the training data.

Lemma 17. If Assumptions 2(i) & (ii) are satisfied, there is an event E2 ⊆ E1 with P(E2) ⩾ 1− 2δ
3 on

which the following happen simultaneously.

(i) The spectral norm of the data matrix is bounded above as follows:

∥X∥2 ⩽ 2

√
n

d
.

This implies that, for any weights W ∈ Rm×d with rows wj , j = 1, ...,m,

∥Gwj∥2 ⩽ 2

√
n

md
, ∥GW ∥2 ⩽ 2

√
n

d
and ∥HW ∥2 ⩽

4n

d
.

50



(ii) The minimum eigenvalue λmin of the analytical NTK matrix, is bounded from below:

λmin ⩾
n

5d
.

Proof. (i) We have that the rows of
√
dX are independent, and by (Vershynin, 2018, p.45, Exercise 3.3.1),

each row is isotropic. Moreover, each row has mean 0, and has sub-Gaussian norm bounded by an
absolute constant C1 > 0 independent of d (Vershynin, 2018, p.53, Theorem 3.4.6), i.e.,∥

√
dxi∥ψ2 ⩽

C1. Hence, by (Vershynin, 2018, p.91, Theorem 4.6.1), there exists an absolute constant C2 > 0
such that for all t ⩾ 0,

P
(
∥
√
dX∥2 ⩾

√
n+ C2C

2
1 (
√
d+ t)

)
⩽ 2e−t

2

.

Then defining an absolute constant C := 2C2C
2
1 , and noting that

√
n
d ⩾ 2C by Assumption 2(ii),

P
(
∥X∥2 ⩾ 2

√
n

d

)
⩽ P

(
∥X∥2 ⩾

√
n

d
+ 2C2C

2
1

)
= P

(
∥
√
dX∥2 ⩾

√
n+ 2

√
dC2C

2
1

)
= 2e−d letting t =

√
d above.

We note that 2e−d ⩽ δ
6 by Assumption 2(i).

For the next assertions on the high-probability event that ∥X∥2 ⩽ 2
√

n
d , we see that

∥Gwj
∥22 = ∥(Jwj

∗X⊤)⊤(Jwj
∗X⊤)∥2

= ∥(J⊤
wj

Jwj
)⊙ (XX⊤)∥2 by (M-1)

⩽ ∥X∥22 max
i∈{1,...,n}

|[J⊤
wj

Jwj ]ii| by (M-2)

⩽
4n

d
max

i∈{1,...,n}

1

m
ϕ′(wj · xi)2 by the above bound on ∥X∥2

⩽
4n

dm
since ϕ′(wj · xi)2 ⩽ 1,

and by the same argument,

∥GW ∥22 = ∥(JW ∗X⊤)⊤(JW ∗X⊤)∥2
= ∥(J⊤

WJW )⊙ (XX⊤)∥2 by (M-1)

⩽ ∥X∥22 max
i∈{1,...,n}

|[J⊤
WJW ]ii| by (M-2)

⩽
4n

d
max

i∈{1,...,n}

1

m

m∑
j=1

ϕ′(wj · xi)2 by the above bound on ∥X∥2

⩽
4n

d
since ϕ′(wj · xi)2 ⩽ 1.

Lastly,

∥HW ∥2 = ∥G⊤
WG∥2 = ∥GW ∥22 ⩽

4n

d
.

(ii) Recall from Section D.2.3 the Taylor series expansion of κ:

κ(x,x′) =
1

4
x · x′ +

1

2π

∞∑
r=0

(
1
2

)
r

r! + 2rr!
(x · x′)2r+2.

Hence,

H =
1

4
XX⊤ +

1

2π

∞∑
r=0

(
1
2

)
r

r! + 2rr!

(
XX⊤)⊙(2r+2)

=
1

4
XX⊤ +

1

2π

((
XX⊤)⊙2

+ ...
)
,

51



where the superscript ⊙(2r+2) denotes the (2r+2)-times Hadamard product. Here, XX⊤ is clearly
positive semi-definite, and by Schur product theorem (Horn and Johnson, 2013, p.479, Theorem
7.5.3), we know that Hadamard products of positive semi-definite matrices are positive semi-definite,
so each summand is positive semi-definite, and so just considering the first term 1

4XX⊤ and denoting
the minimum eigenvalue of XX⊤ by µmin, we have λmin ⩾ 1

4µmin. But by (Vershynin, 2018, p.91,
Theorem 4.6.1), the singular value of

√
dX is lower bounded by

√
n− C

2 (
√
d+ t) with probability at

least 1 − 2e−t
2

for any t ⩾ 0, where C > 0 is an absolute constant. Letting t =
√
d, the singular

value of
√
dX is lower bounded by

√
n− C

√
d ⩾ 2√

5

√
n (using Assumption 2(ii)) with probability

at least 1− 2e−d. This means that, with probability at least 1− 2e−d, µmin ⩾ 4n
5d . Hence λmin ⩾ n

5d .
We note that, again, 2e−d ⩽ δ

6 by Assumption 2(i).
The events of parts (i) and (ii) each have probability at least 1− δ

6 , so by the union bound, the event
on which both parts are satisfied has probability at least 1− δ

3 . Now we look for the event E2 ⊆ E1 on
which the events of this Lemma hold, and by union bound, we have P(E2) ⩾ 1− 2δ

3 .

D.3.3 Randomness due to both Weight Initialization and Sampling

Finally, we present some results that hold with high probability, in which the randomness comes both
from the weights and the samples.

Lemma 18. We have the following high-probability events:

(i) If Assumptions 2(i) & (ii) are satisfied, the minimum eigenvalue of the initial NTK matrix is
bounded from below with probability at least 1− δ

6 :

λ0,min ⩾
n

10d
.

(ii) Define, for each u = 1, ..., Uε,

Vu =
1

nu
G0H

u−1
0 ξ0 − ⟨G0, H

u−1
0 ζ0⟩2.

If all the conditions in Assumption 2 is satisfied, then with probability at least 1 − δ
6 , for all

u = 1, ..., Uε,

∥Vu∥F < 8

√
log(nu)

⌊nu⌋
.

(iii) If all the conditions in Assumption 2 is satisfied, then we have

Hence, if all the conditions in Assumption 2 are satisfied, then there is an event E3 ⊆ E2 with P(E3) ⩾ 1−δ
on which parts (i) and (ii) occur simultaneously.

Proof. (i) Recall from Section D.2.2 that we have

Ew∼N (0,Id) [Hw] =
1

m
H and H0 =

m∑
j=1

Hwj(0).

For each j = 1, ...,m, apply (M-2), and note that ϕ′(wj(0) · xi)2 ⩽ 1 and apply Lemma 17(i) for
∥X∥2 to see that

∥Hwj(0)∥2 =
1

m

∥∥(XX⊤)⊙ (ϕ′(Xwj(0)
⊤)ϕ′(wj(0)X

⊤))
∥∥
2

⩽
∥X∥22
m

max
i∈{1,...,n}

ϕ′(wj(0) · xi)2

⩽
4n

md
.

52



Hence, recalling from Lemma 17(ii) that we have λmin ⩾ n
5d and using the Matrix Chernoff inequality

(M-Chernoff), we have

P
(
λ0,min ⩽

n

10d

)
⩽ P

(
λ0,min ⩽

λmin

2

)
⩽ n

(√
2e
)−mdλmin

8n

⩽ n
(√

2e
)− m

40

.

We note that n
(√

2e
)− m

40 ⩽ δ
6 by Assumption 2(ii).

(ii) For each u = 1, ..., Uε, we have

1

nu
G0H

u−1
0 ξ0 =

1

nu

n∑
i1,...,iu=1

G0(xi1)[H0]i1,i2 ...[H0]iu−1,iuyiu .

Here, [H0]i,i′ = ⟨G0(xi), G0(xi′)⟩F = κ0(xi,xi′), so

1

nu
G0H

u−1
0 ξ0 =

1

nu

n∑
i1,...,iu=1

G0(xi1)κ0(xi1 ,xi2)...κ0(xiu−1
,xiu)yiu

=
1

nu

n∑
i1,...,iu=1

G0(xi1)yiu

u−1∏
c=1

κ0(xic ,xic+1)

Defining Υu : (Rd × R)u → Rm×d as

Υu((x1, y1), ..., (xu, yu)) = G0(x1)

u−1∏
c=1

κ0(xc,xc+1)yu − ⟨G0, H
u−1
0 ζ0⟩2,

we clearly have E[Υu((x1, y1), ..., (xu, yu))] = 0 and that

1

nu
G0H

u−1
0 ξ0 − ⟨G0 H

u−1
0 ζ0⟩2 =

1

nu

∑
i1,...,iu=1

Υu((xi1 , yi1), ..., (xiu , yiu)),

i.e., we have a V-statistic (c.f. Section B.6). We actually construct a symmetric version Ῡu :
(Rd × R)u → Rm×d of Υu by

Ῡu((x1, y1), ..., (xu, yu)) =
1

u!

∑
∗

Υu((xi1 , yi1), ..., (xiu , yiu)),

where the sum
∑

∗ is over the u! permutations {i1, ..., iu} of {1, ..., u}. Then it is easy to see that
we still have E[Ῡu] = 0 and

Vu =
1

nu
G0H

u−1
0 ξ0 − ⟨G0, H

u−1
0 ζ0⟩2 =

1

nu

n∑
i1,...,iu=1

Ῡu((xi1 , yi1), ..., (xiu , yiu)).

Note that we have, almost surely for all u-tuples ((x1, y1), ..., (xu, yu)),

∥Ῡu((x1, y1), ..., (xu, yu))∥F ⩽
1

u!

∑
∗
∥Υu((xi1 , yi1), ..., (xiu , yiu))∥F

⩽ ∥G0(x0)∥F

u−1∏
c=1

|κ0(xc,xc+1)||yu|+ ∥⟨G0, H
u−1
0 ζ0⟩2∥F

⩽ 1 +

√
⟨Hu

0 ζ0, H
u−1
0 ζ0⟩2

⩽ 1 + ∥H0∥
u− 1

2
2︸ ︷︷ ︸

Lemma 15(ii)

∥f∗∥2︸ ︷︷ ︸
f⋆-Bound

⩽ 1 +
1

(2d)u−
1
2

53



⩽ 2.

Hence, from Proposition 14,

P

(
∥Vu∥F ⩾ 8

√
log(nu)

⌊nu⌋

)
⩽

2

n
.

Taking a union bound over u = 1, ..., Uε, we have

P

(
∥Vu∥F ⩾ 8

√
log(nu)

⌊nu⌋
for some u = 1, ..., Uε

)
⩽

2Uε
n

.

We note that 2Uε

n ⩽ δ
6 by Assumption 2(iii).

(iii)
The events of parts (i) and (ii) each have probabilities at least 1− δ

6 , so by union bound, E3 ⊆ E2 on
which the events of this Lemma all hold satisfies P(E3) ⩾ 1− δ.

D.4 Proof of Overfitting
In this section, we assume that we are on the high-probability event E3 from Lemma 18 in Appendix D.3,
and we show that the empirical risk ∥y − f̂t∥2 = ∥ξ̂t∥2 is small. Our strategy will be to use real induction
(c.f. Appendix B.5) on t to get a bound on ∥ξ̂t∥2. To that end, we give the following definition.

Definition 19. Define a subset Ŝ of [0,∞) as the collection of t ∈ [0,∞) such that, for each j = 1, ...,m,

∥ŵj(t)− ŵj(0)∥2 < 32

√
d

m
.

Our goal is to show a bound on ∥ξ̂t∥2 as t → ∞. We first prove a few results that hold for t ∈ Ŝ.

Lemma 20. Suppose that Assumptions 2(i) & (ii) and 3(i) are satisfied, and suppose that t ∈ Ŝ.

(i) The spectral norm of the NTK matrix does not move much:

∥Ĥt − Ĥ0∥2 ⩽
4n(34 +

√
logm)√

md
.

(ii) The minimum eigenvalue of Ĥt is bounded from below:

λ̂t,min >
n

16d
,

which implies

∥∇W R̂t∥2F ⩾
1

4n2
∥ξ̂t∥22.

(iii) The gradient of the norm of the error vector is bounded from above by a negative number:

d∥ξ̂t∥2
dt

⩽ − 1

8d
∥ξ̂t∥2.

(iv) The norm of the error vector decays exponentially:

∥ξ̂t∥2 ⩽
√
n exp

(
− t

8d

)
.

54



Proof. (i) See that, using (M-1), (M-2) and Lemma 17(i),

∥Ĥt − Ĥ0∥2 = ∥Ĝ⊤
t Ĝt − Ĝ⊤

0 Ĝ0∥2
= ∥(Ĵt ∗X⊤)⊤(Ĵt ∗X⊤)− (Ĵ0 ∗X⊤)⊤(Ĵ0 ∗X⊤)∥2
= ∥(XX⊤)⊙ (Ĵ⊤

t Ĵt − Ĵ⊤
0 Ĵ0)∥2

⩽
∥X∥22
m

max
i∈{1,...,n}

∣∣∣ϕ′(x⊤
i Ŵ (t)⊤)ϕ′(Ŵ (t)xi)− ϕ′(x⊤

i W (0)⊤)ϕ′(W (0)xi)
∣∣∣

⩽
4n

dm
max

i∈{1,...,n}

m∑
j=1

∣∣ϕ′(ŵj(t) · xi)2 − ϕ′(wj(0) · xi)2
∣∣

=
4n

dm
max

i∈{1,...,n}

m∑
j=1

1 {ϕ′(ŵj(t) · xi) ̸= ϕ′(wj(0) · xi)} .

Here, for each i = 1, ..., n and j = 1, ...,m, in order for ϕ′(ŵj(0) · xi) ̸= ϕ′(ŵj(t) · xi), there must be
some v ∈ Rd on the weight trajectory, such that v · xi = 0 and

∥v −wj(0)∥2 ⩽ 32

√
d

m
.

But by Lemma 16(iii), there only exist at most
√
md(34 +

√
logm) neurons such that this happens.

Hence,

∥Ĥt − Ĥ0∥2 ⩽
4n(34 +

√
logm)√

md
.

(ii) See that

λ̂t,min = inf
v∈Sn−1

∥Ĥtv∥2

⩾ inf
v∈Sn−1

∥Ĥ0v∥2 − sup
v∈Sn−1

∥(Ĥt − Ĥ0)v∥2

⩾ λ̂0,min − ∥Ĥt − Ĥ0∥2

⩾
n

10d
− 4n(34 +

√
logm)√

md
by Lemma 18(i) & part (i)

⩾
n

16d
by Assumption 3(i)

as required. Then using this, see that

∥∇W R̂t∥2F =
4

n2
∥Ĝtξ̂t∥2F =

4

n2
ξ̂⊤t Ĝ

⊤
t Ĝtξ̂t =

4

n2
ξ̂⊤t Ĥtξ̂t ⩾

1

4nd
∥ξ̂t∥22.

(iii) Differentiate both sides of R̂t =
1
n∥ξ̂t∥

2
2 with respect to t and apply the chain rule to obtain

dR̂t

dt
=

2

n
∥ξ̂t∥2

d∥ξ̂t∥2
dt

=⇒ d∥ξ̂t∥2
dt

=
n

2∥ξ̂t∥2
dR̂t

dt
.

We apply the chain rule and part (ii) to see that

dR̂t

dt
=

〈
∇W R̂t,

dŴ

dt

〉
F

= −∥∇W R̂t∥2F ⩽ − 1

4nd
∥ξ̂t∥22

Hence, substituting into above,
d∥ξ̂t∥2
dt

⩽ − 1

8d
∥ξ̂t∥2.

55



(iv) We apply Grönwall’s inequality and the fact that ∥ξ0∥2 = ∥y∥2 ⩽
√
n to see that

∥ξ̂t∥2 ⩽ ∥ξ0∥2 exp
(
− t

8d

)
⩽

√
n exp

(
− t

8d

)
.

Finally, we prove that Ŝ ∈ [0,∞) is inductive. Then we know from Appendix B.5 that Ŝ = [0,∞).

Theorem 21. Suppose that Assumptions 2(i) & (ii) and 3(i) are satisfied. Then Ŝ is inductive.

Proof. We prove each of (RI1), (RI2) and (RI3) in Appendix B.5 for the set Ŝ.

(RI1) Obvious.

(RI2) Fix some T ⩾ 0, and suppose that T ∈ Ŝ. Then we want to show that there exists some γ > 0 such

that [T, T + γ] ⊆ Ŝ. Since T ∈ Ŝ, we have ∥ŵj(T )−wj(0)∥2 < 32
√

d
m for each j = 1, ...,m. Define

γj = 4d−
√
md∥ŵj(T )−wj(0)∥2

8
.

Then γj > 0, and for all t ∈ [T, T + γj ],

∥ŵj(t)−wj(0)∥2 ⩽ ∥ŵj(T )−wj(0)∥2 + ∥ŵj(t)− ŵj(T )∥2

= ∥ŵj(T )−wj(0)∥2 +
∥∥∥∥∫ t

T

dŵj

dt
dt

∥∥∥∥
2

⩽ ∥ŵj(T )−wj(0)∥2 +
∫ t

T

∥∇wj R̂t∥2dt

⩽ ∥ŵj(T )−wj(0)∥2 +
2

n

∫ t

T

∥Gŵj(t)ξ̂t∥2dt

⩽ ∥ŵj(T )−wj(0)∥2 +
4√
mnd

∫ t

T

∥ξ̂t∥2dt by Lemma 17(i)

⩽ ∥ŵj(T )−wj(0)∥2 +
4(t− T )√

md

⩽
1

2
∥ŵj(T )−wj(0)∥2 + 16

√
d

m

< 32

√
d

m
.

Now take γ = minj∈{1,...,m} γj . Then [T, T + γ] ⊆ Ŝ as required.

(RI3) Fix some T ⩾ 0 and suppose that [0, T ) ⊆ Ŝ. Then we want to show that T ∈ Ŝ. See that, for each
j ∈ {1, ...,m},

∥ŵj(T )−wj(0)∥2 =

∥∥∥∥∥
∫ T

0

dŵj

dt
dt

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ T

0

−∇wj
R̂tdt

∥∥∥∥∥
2

=
2

n

∥∥∥∥∥
∫ T

0

Gŵj(t)ξ̂tdt

∥∥∥∥∥
2

⩽
4√
mnd

∫ T

0

∥ξ̂t∥2dt Lemma 17(i)

<
4√
md

∫ T

0

exp

(
− t

8d

)
dt Lemma 20(iv)

56



⩽ 32

√
d

m
.

So T ∈ Ŝ.

Since Ŝ satisfies all of (RI1), (RI2) and (RI3), Ŝ is inductive.

Theorem 7 (Overfitting). If Assumptions 2(i) & (ii) and 3(i) are satisfied, there is an event with
probability at least 1− δ on which R(f̂t) ⩽ e−t/4d. Moreover, at time t = Tε, we have R(f̂Tε) ⩽ ε.

Proof. Theorem 21 implies that we can run gradient flow as long as we want and ensure that the empirical
risk follows Lemma 20(iv).

So only the last statement requires attention. We know from Lemma 15(i) that the maximum value of
λε is 1

4d , which means that the minimum value of Tε is 8d log
(

2√
ε

)
. Hence,

R(f̂Tε
) ⩽ exp

(
−2 log

(
2√
ε

))
=

ε

4
⩽ ε

as required.

D.5 Proof of Small Approximation Error
In this section, we assume that we are still on the high-probability event E3 from Lemma 18 in Appendix D.3,
and we show that the approximation error ∥f⋆ − ft∥2 = ∥ζt∥2 is small, i.e., less than our desired level
1
2

√
ε, with the other 1

2

√
ε to come from the estimation error in Appendix D.6.

Our strategy will be to use real induction (c.f. Appendix B.5) on t to get a bound on ∥ζt∥2 ⩽ 1
2

√
ε for

some m that depends on ε. First, recalling the definition of Lε from (4.1), note that there exists some
time T ′

ε (which may be ∞) defined as

T ′
ε = min{t ∈ R+ : ∥ζt∥2 ⩽ 2∥ζ̃Lε

t ∥2}, (D.1)

i.e., the first time that ∥ζLε
t ∥2 accounts for less than half of ∥ζt∥2. It may be that ∥ζLε

t ∥2 will never
account for less than half of ∥ζt∥2, in which case we will have T ′

ε = ∞. The purpose of T ′
ε is to ensure

that we have approximation error bounded by ε before we hit T ′
ε, so it is no problem for T ′

ε to be infinite.

Definition 22. Define a subset Sε of [0, T ′
ε] as the collection of t ∈ [0, T ′

ε] such that, for each j = 1, ...,m,

∥wj(t)−wj(0)∥2 <
2
√
2

λε
√
md

.

We first prove a few results that hold for t ∈ Sε.

Lemma 23. Suppose that Assumption 2(i) and Assumption 3(ii) are satisfied, and that t ∈ Sε.

(i) We have

∥Ht −H0∥2 ⩽
1

2
√
md3λε

(3
√
2 +

√
logm).

(ii) We have
∥∇WRt∥2F ⩾ λε∥ζt∥22.

(iii) We have
d∥ζt∥2
dt

⩽ −λε
2
∥ζt∥2.

(iv) We have

∥ζt∥2 ⩽ exp

(
−1

2
λεt

)
.

57



Proof. (i) First see that

(Ht −H0)f(x) = Ex′ [(⟨Gt(x), Gt(x
′)⟩F − ⟨G0(x), G0(x

′)⟩F) f(x′)]

= Ex′

x · x′

m

m∑
j=1

(ϕ′(wj(t) · x)ϕ′(wj(t) · x′)− ϕ′(wj(0) · x)ϕ′(wj(0) · x′)) f(x′)

 .

We use the same linear operator Ξ as in the proof of Lemma 15(ii), which we recall to be

Ξ(f)(x) = Ex′ [x · x′f(x′)],

and we also recall that ∥Ξ∥2 ⩽ 1
2d . Now applying Lemma 12, we see that

∥Ht −H0∥2 ⩽
1

2d
sup

x∈Sd−1

∣∣∣∣∣∣ 1m
m∑
j=1

(
ϕ′(wj(t) · x)2 − ϕ′(wj(0) · x)2

)∣∣∣∣∣∣
⩽

1

2d
sup

x∈Sd−1

1

m

m∑
j=1

∣∣ϕ′(wj(t) · x)2 − ϕ′(wj(0) · x)2
∣∣

=
1

2d
sup

x∈Sd−1

1

m

m∑
j=1

1 {ϕ′(wj(t) · x) ̸= ϕ′(wj(0) · x)} .

Here, for each j = 1, ...,m, in order for ϕ′(wj(t) · x) ̸= ϕ′(wj(0) · x), there must be some v ∈ Rd on
the weight trajectory, such that v · x = 0 and

∥v −wj(0)∥2 ⩽
2
√
2

λε
√
md

.

But by Lemma 16(iv), there only exist at most
√
m√
dλε

(3
√
2+

√
logm) neurons such that this happens.

Hence,

∥Ht −H0∥2 ⩽
1

2
√
md3λε

(3
√
2 +

√
logm).

(ii) See that

∥∇WRt∥2F = ∥2⟨Gt, ζt⟩2∥2F
= 4⟨ζt, Htζt⟩2
= 4⟨ζt, Hζt⟩2 + 4⟨ζt, (H0 −H)ζt⟩2 + 4⟨ζt, (Ht −H0)ζt⟩2
⩾ 4⟨ζt, Hζt⟩2︸ ︷︷ ︸

(a)

− 4|⟨ζt, (H0 −H)ζt⟩2|︸ ︷︷ ︸
(b)

− 4|⟨ζt, (Ht −H0)ζt⟩2|︸ ︷︷ ︸
(c)

.

We look at (a), (b) and (c) separately.

(a) Recall that T ′
ε is defined as

T ′
ε = min{t ∈ R+ : ∥ζLε

t ∥2 ⩽ ∥ζ̃Lε
t ∥2} = min{t ∈ R+ : ∥ζLε

t ∥22 ⩽
1

2
∥ζt∥22}.

Since t ⩽ T ′
ε, we have

4⟨ζt, Hζt⟩2 = 4

∞∑
l=1

λl⟨ζt, φl⟩22 ⩾ 4

Lε∑
l=1

λl⟨ζt, φl⟩22 ⩾ 4λε∥ζLε
t ∥22 ⩾ 2λε∥ζt∥22.

(b) By the Cauchy-Schwarz inequality and Lemma 16(ii),

4|⟨ζt, (H0 −H)ζt⟩2| ⩽ 4∥ζt∥22∥H0 −H∥2 ⩽ 10∥ζt∥22

√
log(2m)

md
.

58



(c) By the Cauchy-Schwarz inequality and part (i),

4|⟨ζt, (Ht −H0)ζt⟩2| ⩽ 4∥ζt∥22∥Ht −H0∥2 ⩽
2√

md3λε
(3
√
2 +

√
logm)∥ζt∥22.

Putting (a), (b) and (c) together and applying Assumption 3(ii) that

λε ⩾ 10

√
log(2m)

md
+

2√
md3λε

(3
√
2 +

√
logm),

we have

∥∇WRt∥2F ⩾

(
2λε − 10

√
log(2m)

md
− 2√

md3λε
(3
√
2 +

√
logm)

)
∥ζt∥22 ⩾ λε∥ζt∥22.

(iii) Differentiate both sides of Rt = ∥ζt∥22 +R(f⋆) with respect to t and apply the chain rule to obtain

dRt
dt

= 2∥ζt∥2
d∥ζt∥2
dt

=⇒ d∥ζt∥2
dt

=
1

2∥ζt∥2
dRt
dt

.

We apply the chain rule and part (ii) to see that

dRt
dt

=

〈
∇WRt,

dW

dt

〉
F
= −∥∇WRt∥2F ⩽ −λε∥ζt∥22.

Hence, substituting this into above,

d∥ζt∥2
dt

⩽ −λε
2
∥ζt∥2.

(iv) We apply Grönwall’s inequality and the fact that ∥ζ0∥2 = ∥f⋆∥2 ⩽ 1 to see that

∥ζt∥2 ⩽ ∥ζ0∥2 exp
(
−1

2
λεt

)
⩽ exp

(
−1

2
λεt

)
.

Finally, we prove that Sε ⊆ [0, T ′
ε] is inductive. Then we know from Appendix B.5 that Sε = [0, T ′

ε].

Theorem 24. Suppose that Assumption 2(i) and Assumption 3(ii) are satisfied. Then Sε ⊆ [0, T ′
ε] is

inductive.

Proof. We prove each of (RI1), (RI2) and (RI3) for the set Sε.

(RI1) Obvious.

(RI2) Fix some T ∈ [0, T ′
ε), and suppose that T ∈ Sε. Then we want to show that there exists some γ > 0

such that [T, T + γ] ⊆ Sε. Since T ∈ Sε, we have ∥wj(T )−wj(0)∥F < 2
√
2

λε

√
md

for each j = 1, ...,m.
Define

γj =
1

λε
−

√
md∥wj(T )−wj(0)∥F

2
√
2

.

Then γj > 0, and for all t ∈ [T, T + γj ],

∥wj(t)−wj(0)∥F ⩽ ∥wj(T )−wj(0)∥F + ∥wj(T )−wj(t)∥F

= ∥wj(T )−wj(0)∥F +

∥∥∥∥∫ t

T

dwj

dt
dt

∥∥∥∥
F

⩽ ∥wj(T )−wj(0)∥F +

∫ t

T

∥∇wj
Rt∥Fdt

59



⩽ ∥wj(T )−wj(0)∥F +

∫ t

T

∥∇wj
Rt∥F︸ ︷︷ ︸

Lemma 15(ii)

dt

⩽ ∥wj(T )−wj(0)∥F +

√
2√
md

∫ t

T

∥ζt∥2dt︸ ︷︷ ︸
Lemma 23(iv)

⩽ ∥wj(T )−wj(0)∥F +

√
2(t− T )√

md

⩽
1

2
∥wj(T )−wj(0)∥F +

√
2

λε
√
md

<
2
√
2

λε
√
md

.

Now take γ = minj∈{1,...,m} γj . Then [T, T + γ] ⊆ Sε as required.

(RI3) Fix some T ∈ (0, T ′
ε] and suppose that [0, T ) ⊆ Sε. Then we want to show that T ∈ Sε. See that,

for each j ∈ {1, ...,m},

∥wj(T )−w(0)∥F =

∥∥∥∥∥
∫ T

0

dwj

dt
dt

∥∥∥∥∥
F

⩽
∫ T

0

∥∇wj
Rt∥Fdt

⩽

√
2

md

∫ T

0

∥ζt∥2dt by Lemma 15(ii)

<

√
2

md

∫ T

0

e−
λεt
2 dt by Lemma 23(iv)

⩽
2
√
2

λε
√
md

.

Hence T ∈ Sε as required.

Since all of (RI1), (RI2) and (RI3) are satisfied, Sε ⊆ [0, T ′
ε] is inductive.

Now we show that T ′
ε is large enough to ensure that Tε := 2

λε
log
(

2√
ε

)
⩽ T ′

ε such that, for all

t ∈ [Tε, T
′
ε], the approximation error is below the desired level: ∥ζt∥2 ⩽ 1

2

√
ε.

Theorem 8 (Approximation Error). Suppose that Assumptions 2(i) and 3(ii) are satisfied. Then, on
the same event as in Theorem 7, we have, for t ∈ [0, Tε], ∥ft − f⋆∥2 ⩽ exp (−λεt/2). Moreover, at time
t = Tε, we have ∥ft − f⋆∥2 ⩽

√
ε/2.

Proof. Recall from Section D.2.4 that we had R̃Lε
t = ∥ζ̃Lε

t ∥22 +R(f⋆), the population risk in this subspace.
Differentiating both sides of this with respect to t using the chain rule gives us

dR̃Lε
t

dt
= 2∥ζ̃Lε

t ∥2
d∥ζ̃Lε

t ∥2
dt

=⇒ d∥ζ̃Lε
t ∥2
dt

=
1

2∥ζ̃Lε
t ∥2

dR̃Lε
t

dt
.

Here, see that, by the chain rule,

dR̃Lε
t

dt
=

〈
∇W R̃Lε

t ,
dW̃Lε

dt

〉
F

= −∥∇W R̃Lε
t ∥2F ⩽ 0.

Substituting this back into above, we know that ∥ζ̃Lε
t ∥2 is not increasing. Hence, by our choice of Lε,

∥ζ̃Lε
t ∥2 ⩽ ∥ζ̃Lε

0 ∥2 ⩽
1

4

√
ε

60



for all t ⩾ 0.
Now, as we perform gradient flow from t = 0, we know that, by Lemma 23(iv),

∥ζt∥2 ⩽ exp

(
−1

2
λεt

)
up to T ′

ε. Then for all t < Tε, we have

∥ζt∥2 >
1

2

√
ε ⩾ 2∥ζ̃Lε

0 ∥2 ⩾ 2∥ζ̃Lε
t ∥2,

which means t < T ′
ε and we can continue gradient flow with Lemma 23(iv) continuing to hold. After we

have reached Tε, i.e., for all t ∈ [Tε, T
′
ε], we have

∥ζt∥2 ⩽
1

2

√
ε

as required.

D.6 Proof of Small Estimation Error
In this section, we assume that we are still on the high-probability event E3 of Appendix D.3 with
P(E3) ⩾ 1− δ, which means that we can assume all the results from Appendix D.4 and D.5.

First, we prove the following decomposition of the estimation error.

Lemma 25. For any integer U ⩾ 2 and for any T > 0, we have the following decomposition:

∥f̂T − fT ∥2 ⩽
1√
d

U∑
u=1

(2T )u

u!

∥∥∥∥ 1

nu
G0H

u−1
0 ξ0 − ⟨G0, H

u−1
0 ζ0⟩2

∥∥∥∥
F

+
2T√
d

sup
t∈[0,T ]

∥∥∥∥ 1n (Ĝt − Ĝ0)ξ̂t

∥∥∥∥
F
+

2T√
d

sup
t∈[0,T ]

∥⟨G0 −Gt, ζt⟩2∥F

+
1√
d

U∑
u=2

(2T )u

nuu!
sup
t∈[0,T ]

∥G0H
u−2
0 (Ĥt −H0)ξ̂t∥F

+
1√
d

U∑
u=2

(2T )u

u!
sup
t∈[0,T ]

∥⟨G0, H
u−2
0 (H0 −Ht)ζt⟩2∥F

+
2U√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

...

∫ tU−1

0

1

nU
G0H

U−1
0 (ξ̂tU − ξ0)

−⟨G0, H
U−1
0 (ζtU − ζ0)⟩2dtUdtU−1...dt1

∥∥
F .

Proof. We prove this by induction on U . We first look at the base case U = 2. As noted before (e.g., in
the proof of Lemma 17(i)), the vector

√
dx is isotropic (Vershynin, 2018, p.45, Exercise 3.3.1). Then see

that

∥f̂T − fT ∥2 ⩽
1√
m

m∑
j=1

√
Ex[(ϕ(ŵj(T ) · x)− ϕ(wj(T ) · x))2] triangle inequality

⩽
1√
m

m∑
j=1

√
Ex[((ŵj(T )−wj(T )) · x)2]

=
1√
dm

m∑
j=1

√
Ex[((ŵj(T )−wj(T )) · (

√
dx))2]

=
1√
dm

m∑
j=1

∥ŵj(T )−wj(T )∥2 (Vershynin, 2018, p.43, Lemma 3.2.3)

⩽
1√
d
∥Ŵ (T )−W (T )∥F

61



=
1√
d
∥Ŵ (T )−W (0)− (W (T )−W (0))∥F

=
1√
d

∥∥∥∥∥
∫ T

0

dŴ

dt

∣∣∣
t1
− dW

dt

∣∣∣
t1
dt1

∥∥∥∥∥
F

=
2√
d

∥∥∥∥∥
∫ T

0

1

n
Ĝt1 ξ̂t1 −

1

n
Ĝ0ξ̂0 +

1

n
Ĝ0ξ̂0 − ⟨G0, ζ0⟩2

+⟨G0, ζ0⟩2 − ⟨Gt1 , ζt1⟩2dt∥F

⩽
2√
d

∫ T

0

∥∥∥∥ 1nG0ξ0 − ⟨G0, ζ0⟩2
∥∥∥∥

F
dt1

+
2√
d

∥∥∥∥∥
∫ T

0

1

n
Ĝt1 ξ̂t1 −

1

n
Ĝ0ξ̂0 + ⟨G0, ζ0⟩2 − ⟨Gt1 , ζt1⟩2dt1

∥∥∥∥∥
F

⩽
2T√
d

∥∥∥∥ 1nG0ξ0 − ⟨G0, ζ0⟩2
∥∥∥∥

F

+
2√
d

∥∥∥∥∥
∫ T

0

1

n
(Ĝt1 − Ĝ0)ξ̂t1dt1

∥∥∥∥∥
F

+
2√
d

∥∥∥∥∥
∫ T

0

⟨G0 −Gt1 , ζt1⟩2dt1

∥∥∥∥∥
F

+
2√
d

∥∥∥∥∥
∫ T

0

1

n
G0(ξ̂t1 − ξ0)− ⟨G0, ζt1 − ζ0⟩2dt1

∥∥∥∥∥
F

⩽
2T√
d

∥∥∥∥ 1nG0ξ0 − ⟨G0, ζ0⟩2
∥∥∥∥

F

+
2T√
d

sup
t∈[0,T ]

∥∥∥∥ 1n (Ĝt −G0)ξ̂t

∥∥∥∥
F
+

2T√
d

sup
t∈[0,T ]

∥⟨G0 −Gt, ζt⟩2∥F

+
2√
d

∥∥∥∥∥
∫ T

0

1

n
G0(ξ̂t1 − ξ0)− ⟨G0, ζt1 − ζ0⟩2dt1

∥∥∥∥∥
F

. (*)

Here, for the last term,

2√
d

∥∥∥∥∥
∫ T

0

1

n
G0(ξ̂t1 − ξ0)− ⟨G0, ζt1 − ζ0⟩2dt1

∥∥∥∥∥
F

=
2√
d

∥∥∥∥∥
∫ T

0

1

n
G0

(∫ t1

0

dξ̂

dt2
dt2

)
−
〈
G0,

∫ t1

0

dζ

dt2
dt2

〉
2

dt1

∥∥∥∥∥
F

=
2√
d

∥∥∥∥∥−
∫ T

0

1

n
G0

∫ t1

0

2

n
Ĥt2 ξ̂t2dt2 +

〈
G0,

∫ t1

0

2Ht2ζt2dt2

〉
2

dt1

∥∥∥∥∥
F

=
4√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

1

n2
G0Ĥt2 ξ̂t2 −

1

n2
G0H0ξ0 +

1

n2
G0H0ξ0

−⟨G0, H0ζ0⟩2 + ⟨G0, H0ζ0⟩2 − ⟨G0, Ht2ζt2⟩2dt2dt1∥F

⩽
2T 2

√
d

∥∥∥∥ 1

n2
G0H0ξ0 − ⟨G0, H0ζ0⟩2

∥∥∥∥
F

+
4√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

1

n2
G0

[
(Ĥt2 −H0)ξ̂t2 +H0(ξ̂t2 − ξ0)

]
+ ⟨G0, H0(ζ0 − ζt2) + (H0 −Ht2)ζt2⟩2 dt2dt1∥F

⩽
2T 2

√
d

∥∥∥∥ 1

n2
G0H0ξ0 − ⟨G0, H0ζ0⟩2

∥∥∥∥
F

+
2T 2

√
dn2

sup
t∈[0,T ]

∥∥∥G0(Ĥt −H0)ξ̂t

∥∥∥
F
+

2T 2

√
d

sup
t∈[0,T ]

∥⟨G0, (H0 −Ht)ζt⟩2∥F

62



+
4√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

1

n2
G0H0(ξ̂t2 − ξ0)− ⟨G0, H0(ζt2 − ζ0)⟩2dt2dt1

∥∥∥∥∥
F

.

Now, putting this into (*), we have

∥f̂T − fT ∥2 ⩽
2T√
d

∥∥∥∥ 1nG0ξ0 − ⟨G0, ζ0⟩2
∥∥∥∥

F

+
2T√
d

sup
t∈[0,T ]

∥∥∥∥ 1n (Ĝt −G0)ξ̂t

∥∥∥∥
F
+

2T√
d

sup
t∈[0,T ]

∥⟨G0 −Gt, ζt⟩2∥F

+
2T 2

√
d

∥∥∥∥ 1

n2
G0H0ξ0 − ⟨G0, H0ζ0⟩2

∥∥∥∥
F

+
2T 2

√
dn2

sup
t∈[0,T ]

∥∥∥G0(Ĥt −H0)ξ̂t

∥∥∥
F
+

2T 2

√
d

sup
t∈[0,T ]

∥⟨G0, (H0 −Ht)ζt⟩2∥F

+
4√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

1

n2
G0H0(ξ̂t2 − ξ0)− ⟨G0, H0(ζt2 − ζ0)⟩2dt2dt1

∥∥∥∥∥
F

=
1√
d

2∑
u=1

(2T )u

u!

∥∥∥∥ 1

nu
G0H

u−1
0 ξ0 − ⟨G0, H

u−1
0 ζ0⟩2

∥∥∥∥
F

+
2T√
d

sup
t∈[0,T ]

∥∥∥∥ 1n (Ĝt −G0)ξ̂t

∥∥∥∥
F
+

2T√
d

sup
t∈[0,T ]

∥⟨G0 −Gt, ζt⟩2∥F

+
1√
d

2∑
u=2

(2T )u

nuu!
sup
t∈[0,T ]

∥∥∥G0H
u−2
0 (Ĥt −H0)ξ̂t

∥∥∥
F

+
1√
d

2∑
u=2

(2T )u

u!
sup
t∈[0,T ]

∥∥⟨G0, H
u−2
0 (H0 −Ht)ζt⟩2

∥∥
F

+
22√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

1

n2
G0H

2−1
0 (ξ̂t2 − ξ0)− ⟨G0, H

2−1
0 (ζt2 − ζ0)⟩2dt2dt1

∥∥∥∥∥
F

.

So the base case u = 2 holds. Suppose that the claim is true for u, i.e.,the following holds:

∥f̂T − fT ∥2 ⩽
1√
d

U∑
u=1

(2T )u

u!

∥∥∥∥ 1

nu
G0H

u−1
0 ξ0 − ⟨G0, H

u−1
0 ζ0⟩2

∥∥∥∥
F

+
2T√
d

sup
t∈[0,T ]

∥∥∥∥ 1n (Ĝt − Ĝ0)ξ̂t

∥∥∥∥
F
+

2T√
d

sup
t∈[0,T ]

∥⟨G0 −Gt, ζt⟩2∥F

+
1√
d

U∑
u=2

(2T )u

nuu!
sup
t∈[0,T ]

∥G0H
u−2
0 (Ĥt −H0)ξ̂t∥F

+
1√
d

U∑
u=2

(2T )u

u!
sup
t∈[0,T ]

∥⟨G0, H
u−2
0 (H0 −Ht)ζt⟩2∥F

+
2U√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

...

∫ tU−1

0

1

nU
G0H

U−1
0 (ξ̂tU − ξ0)

−⟨G0, H
U−1
0 (ζtU − ζ0)⟩2dtUdtU−1...dt1

∥∥
F . (**)

Consider the last term involving the norm of an integral:

2U√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

...

∫ tU−1

0

1

nU
G0H

U−1
0 (ξ̂tU − ξ0)− ⟨G0, H

U−1
0 (ζtU − ζ0)⟩2dtUdtU−1...dt1

∥∥∥∥∥
F

=
2U√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

...

∫ tU−1

0

1

nU
G0H

U−1
0

∫ tU

0

dξ̂tU+1

dtU+1
dtU+1

63



−
〈
G0, H

U−1
0

∫ tU

0

dζ

dtU+1
dtU+1

〉
2

dtUdtU−1...dt1

∥∥∥∥
F

=
2U+1

√
d

∥∥∥∥∥
∫ T

0

∫ t1

0

...

∫ tU−1

0

∫ tU

0

1

nU+1
G0H

U−1
0 ĤtU+1

ξ̂tU+1

−
〈
G0, H

U−1
0 HtU+1

ζtU+1

〉
2
dtU+1dtUdtU−1...dt1

∥∥
F

=
2U+1

√
d

∥∥∥∥∥
∫ T

0

...

∫ tU

0

1

nU+1
G0H

U−1
0 (ĤtU+1

−H0)ξ̂tU+1

+
1

nU+1
G0H

U
0 (ξ̂tU+1

− ξ0) +
1

nU+1
G0H

U
0 ξ0 − ⟨G0, H

U
0 ζ0⟩2

+⟨G0, H
U
0 (ζ0 − ζtU+1

)⟩2 + ⟨G0, H
U−1
0 (H0 −HtU+1

)ζtU+1
⟩2dtU+1...dt1

∥∥
F

⩽
(2T )U+1

√
d(U + 1)!

sup
t∈[0,T ]

∥∥∥∥ 1

nU+1
G0H

U
0 ξ0 − ⟨G0, H

U
0 ζ0⟩2

∥∥∥∥
F

+
(2T )U+1

√
d(U + 1)!

sup
t∈[0,T ]

∥∥∥∥ 1

nU+1
G0H

U−1
0 (Ĥt −H0)ξ̂t

∥∥∥∥
F

+
(2T )U+1

√
d(U + 1)!

sup
t∈[0,T ]

∥∥⟨G0, H
U−1
0 (H0 −Ht)ζt⟩2

∥∥
F

+
2U+1

√
d

∥∥∥∥∥
∫ T

0

...

∫ tU

0

1

nU+1
G0H

U
0 (ξ̂tU+1

− ξ0)− ⟨G0, H
U
0 (ζtU+1

− ζ0)⟩2dtU+1...dt1

∥∥∥∥∥
F

.

Putting this into (**), we have

∥f̂T − fT ∥2 ⩽
1√
d

U+1∑
u=1

(2T )u

u!

∥∥∥∥ 1

nu
G0H

u−1
0 ξ0 − ⟨G0, H

u−1
0 ζ0⟩2

∥∥∥∥
F

+
2T√
d

sup
t∈[0,T ]

∥∥∥∥ 1n (Ĝt − Ĝ0)ξ̂t

∥∥∥∥
F
+

2T√
d

sup
t∈[0,T ]

∥⟨G0 −Gt, ζt⟩2∥F

+
1√
d

U+1∑
u=2

(2T )u

nuu!
sup
t∈[0,T ]

∥G0H
u−2
0 (Ĥt −H0)ξ̂t∥F

+
1√
d

U+1∑
u=2

(2T )u

u!
sup
t∈[0,T ]

∥⟨G0, H
u−2
0 (H0 −Ht)ζt⟩2∥F

+
2U+1

√
d

∥∥∥∥∥
∫ T

0

...

∫ tU

0

1

nU+1
G0H

U
0 (ξ̂tU+1

− ξ0)

−⟨G0, H
U
0 (ζtU+1

− ζ0)⟩2dtU+1...dt1
∥∥

F .

So by induction, the result of the lemma is proven.

We are finally ready to prove our estimation result.

Theorem 9 (Estimation Error). Suppose that all the conditions in Assumptions 2 and 3 are satisfied.
Then, on the same event as in Theorem 7, we have ∥f̂Tε − fTε∥2 ⩽

√
ε/2.

Proof. We will use the decomposition in Lemma 25 with T = Tε and U = Uε. We will consider each term
appearing in the decomposition separately.

(a) See that

2Uε

√
d

∥∥∥∥∥
∫ Tε

0

∫ t1

0

...

∫ tUε−1

0

1

nUε
G0H

Uε−1
0 (ξ̂tUε

− ξ0)dtUε
dtUε−1...dt1

∥∥∥∥∥
F

⩽
(2Tε)

Uε

√
dUε!nUε

∥G0∥2∥H0∥Uε−1
2︸ ︷︷ ︸

Lemma 17(i)

∥ξ̂tUε
− ξ0∥2︸ ︷︷ ︸

Lemma 20(iv)

64



⩽
(2Tε)

Uε

√
dUε!nUε

22UεnUε

dUε− 1
2

=
(8Tε)

Uε

dUεUε!

⩽
1

14

√
ε

by the definition of Uε (see eqn. (4.3)).

(b) See that

2Uε

√
d

∥∥∥∥∥
∫ Tε

0

∫ t1

0

...

∫ tUε−1

0

⟨G0, H
Uε−1
0 (ζtUε

− ζ0)⟩2dtUε
dtUε−1...dt1

∥∥∥∥∥
F

⩽
(2Tε)

Uε

√
dUε!

∥⟨G0, H
Uε−1
0 (ζtUε

− ζ0)⟩2∥F

=
(2Tε)

Uε

√
dUε!

√
⟨HUε

0 (ζtUε
− ζ0), H

Uε−1
0 (ζtUε

− ζ0)⟩2

⩽
(2Tε)

Uε

√
dUε!

∥H0∥
Uε− 1

2
2︸ ︷︷ ︸

Lemma 15(ii)

∥ζtUε
− ζ0∥2︸ ︷︷ ︸

Lemma 23(iv)

⩽
(2Tε)

Uε

√
dUε!

2

(2d)Uε− 1
2

=

√
2TUε

ε

dUεUε!

⩽
1

14

√
ε,

also by the definition of Uε.

(c) See that

1√
d

Uε∑
u=2

(2Tε)
u

u!
sup

t∈[0,Tε]

∥⟨G0, H
u−2
0 (Ht −H0)ζt⟩2∥F

=
1√
d

Uε∑
u=2

(2Tε)
u

u!
sup

t∈[0,Tε]

√
⟨Hu−2

0 (Ht −H0)ζt, H
u−1
0 (Ht −H0)ζt⟩2

⩽
1√
d

Uε∑
u=2

(2Tε)
u

u!
sup

t∈[0,Tε]

∥ζt∥2︸ ︷︷ ︸
Lemma 23(iv)

∥H0∥
u− 3

2
2︸ ︷︷ ︸

Lemma 15(ii)

∥Ht −H0∥2︸ ︷︷ ︸
Lemma 23(i)

⩽
1√
d

Uε∑
u=2

(2Tε)
u

u!

1

(2d)u−
3
2

1

2
√
md3λε

(3
√
2 +

√
logm)

=
6 +

√
2 logm√

mdλε

Uε∑
u=2

Tuε
u!du

⩽

√
ε

14
,

by Assumption 3(iv).

(d) See that

1√
d

Uε∑
u=2

(2Tε)
u

nuu!
sup

t∈[0,Tε]

∥G0H
u−2
0 (Ĥt −H0)ξ̂t∥F

65



⩽
1√
d

Uε∑
u=2

(2Tε)
u

nuu!
sup

t∈[0,Tε]

∥G0∥2∥H0∥u−2
2︸ ︷︷ ︸

Lemma 17(i)

∥Ĥt −H0∥2︸ ︷︷ ︸
Lemma 20(i)

∥ξ̂t∥2︸ ︷︷ ︸
Lemma 20(iv)

⩽
1√
d

Uε∑
u=2

(2Tε)
u

nuu!

22u−3nu−
3
2

du−
3
2

4n(34 +
√
logm)√

md

√
n

=

√
d(34 +

√
logm)

2
√
m

Uε∑
u=2

(8Tε)
u

u!du

⩽
6 +

√
2 logm√

mdλε

Uε∑
u=2

Tuε
u!du

⩽

√
ε

14
,

by Assumption 3(iv).

(e) Note that

Ĵt − Ĵ0 =
1√
m

diag[a]
(
ϕ′
(
Ŵ (t)X⊤

)
− ϕ′

(
Ŵ (0)X⊤

))
∈ Rm×n,

and so for each i = 1, ..., n, the squared Euclidean norm of the ith column of Ĵt − Ĵ0 is∥∥∥∥ 1√
m

diag[a]
(
ϕ′(Ŵ (t)xi)− ϕ′(Ŵ (0)xi)

)∥∥∥∥2
2

=
1

m

m∑
j=1

a2j (ϕ
′(ŵj(t) · xi)− ϕ′(ŵj(0) · xi))

2

=
1

m

m∑
j=1

1 {ϕ′(ŵj(t) · xi) ̸= ϕ′(ŵj(0) · xi)} .

Now we apply (M-1), (M-2) and Lemma 17(i) to see that

∥Ĝt − Ĝ0∥22 = ∥((Ĵt − Ĵ0) ∗X⊤)⊤((Ĵt − Ĵ0) ∗X⊤)∥2
= ∥(XX⊤)⊙ ((Ĵt − Ĵ0)

⊤(Ĵt − Ĵ0))∥22

⩽ ∥X∥22 max
i∈{1,...,n}

1

m

m∑
j=1

1{ϕ′(ŵj(t) · xi) ̸= ϕ′(ŵj(0) · xi)}

⩽
4n

d
max

i∈{1,...,n}

1

m

m∑
j=1

1{ϕ′(ŵj(t) · xi) ̸= ϕ′(ŵj(0) · xi)}.

Here, for each i = 1, ..., n and j = 1, ...,m, in order for ϕ′(ŵj(t) · xi) ̸= ϕ′(ŵj(0) · xi), there must be
some v ∈ Rd on the weight trajectory, such that v · xi = 0 and

∥v −wj(0)∥2 ⩽ 32

√
d

m
.

But by Lemma 16(iii), there only exist at most
√
md(34 +

√
logm) neurons such that this happens.

Hence,

∥Ĝt − Ĝ0∥22 ⩽
4n(34 +

√
logm)√

md
.

Taking the square root, we have

∥Ĝt − Ĝ0∥2 ⩽
2
√
n(34 +

√
logm)

(md)1/4
.

66



Now see that

2Tε√
d

sup
t∈[0,Tε]

∥∥∥∥ 1n (Ĝt −G0)ξ̂t

∥∥∥∥
F
⩽

2Tε

n
√
d

sup
t∈[0,Tε]

∥Ĝt −G0∥2︸ ︷︷ ︸
above

∥ξ̂t∥2︸ ︷︷ ︸
Lemma 20(iv)

⩽
2Tε

m
√
d

2
√
n(34 +

√
logm)

(md)1/4
√
n

=
4Tε
√
34 +

√
logm

(md3)1/4

⩽
6 +

√
2 logm√

mdλε

Uε∑
u=2

Tuε
u!du

⩽

√
ε

14
,

by Assumption 3(iv).

(f) Define an integral operator H̃t : L
2(ρd−1) → L2(ρd−1) by

H̃t(f)(x) = Ex′ [⟨(Gt −G0)(x), (Gt −G0)(x
′)⟩Ff(x′)].

An explicit expression for H̃t(f)(x) is

Ex′

x · x′

m

m∑
j=1

(ϕ′(wj(t) · x)− ϕ′(wj(0) · x)) (ϕ′(wj(t) · x′)− ϕ′(wj(0) · x′)) f(x′)

 ,

and so by applying Lemma 12, and recalling the linear operator Ξ : L2(ρd−1) → L2(ρd−1) defined
by Ξ(f)(x) = Ex′ [x · x′f(x′)] with ∥Ξ∥2 ⩽ 1

2d , we have

∥H̃t∥2 ⩽
1

2d
sup

x∈Sd−1

1

m

m∑
j=1

(ϕ′(wj(t) · x)− ϕ′(wj(0) · x))
2

=
1

2d
sup

x∈Sd−1

1

m

m∑
j=1

1 {ϕ′(wj(t) · x) ̸= ϕ′(wj(0) · x)} .

Here, for each j = 1, ...,m, in order for ϕ′(wj(t) · x) ̸= ϕ′(wj(0) · x), there must be some v ∈ Rd on
the weight trajectory, such that v · x = 0 and

∥v −wj(0)∥2 ⩽
2
√
2

λε
√
md

.

But by Lemma 16(iv), there only exist at most
√
m√
dλε

(3
√
2+

√
logm) neurons such that this happens.

Hence,

∥H̃t∥2 ⩽
1

2
√
md3/2λε

(3
√
2 +

√
logm).

Then see that

2Tε√
d

sup
t∈[0,Tε]

∥⟨Gt −G0, ζt⟩2∥F =
2Tε√
d

sup
t∈[0,Tε]

∥Ex[(Gt −G0)(x)ζt(x)]∥F

=
2Tε√
d

sup
t∈[0,Tε]

√
⟨ζt, H̃tζt⟩2

⩽
2Tε√
d

sup
t∈[0,Tε]

√
∥H̃t∥2︸ ︷︷ ︸
above

∥ζt∥2︸ ︷︷ ︸
Lemma 23(iv)

67



⩽
2Tε√
d

1√
2(md3)1/4

√
λε

√
3
√
2 +

√
logm

=

√
2Tε

√
3
√
2 +

√
logm

(md5)1/4
√
λε

⩽
6 +

√
2 logm√

mdλε

Uε∑
u=2

Tuε
u!du

⩽

√
ε

14
,

by Assumption 3(iv).

(g) We have from Lemma 18(ii) that ∥Vu∥H ⩽ 8
√

log(nu)
⌊n
u ⌋ for all u = 1, ..., Uε. Then see that

1√
d

Uε∑
u=1

(2Tε)
u

u!

∥∥∥∥ 1

nu
G0H

u−1
0 ξ0 − ⟨G0, H

u−1
0 ζ0⟩2

∥∥∥∥
F
=

1√
d

Uε∑
u=1

(2Tε)
u

u!
∥Vu∥F

⩽
8√
d

Uε∑
u=1

(2Tε)
u

u!

√
log(nu)

⌊nu⌋

⩽

√
ε

14

as required, where the last inequality follows by Assumption 3(iii).

Putting it all together, ∥f̂Tε
− fTε

∥2 is bounded by a sum of seven terms each bounded by 1
14

√
ε, so

∥f̂Tε
− fTε

∥2 ⩽

√
ε

2

as required.

D.7 Putting it all Together: Generalization and Benign Overfitting
Bringing together Theorem 8 and Theorem 9, we have a generalization result.

Theorem 10 (Generalization). Suppose that all the conditions in Assumptions 2 and 3 are satisfied.
Then, on the same event as in Theorem 7, we have R(f̂Tε

)−R(f⋆) = ∥f̂Tε
− f⋆∥22 ⩽ ε.

Proof. We have the approximation-estimation decomposition from eqn. (4.4):

∥f̂Tε
− f⋆∥2 ⩽ ∥f̂Tε

− fTε
∥2 + ∥ζTε

∥2.

Here, Theorem 8 gives us ∥ζTε
∥2 ⩽ ε

2 , and Theorem 9 gives us ∥f̂Tε
− fTε

∥2 ⩽ ε
2 . Thence we have

∥f̂Tε
− f⋆∥2 ⩽ ∥f̂Tε

− fTε
∥2 + ∥ζTε

∥2 ⩽
ε

2
+

ε

2
= ε.

Since, R(f̂Tε
)−R(f⋆) = ∥f̂Tε

− f⋆∥22, we get the claimed result.

Finally, bringing together Theorem 7 and Theorem 10, we have the benign overfitting result.

Theorem 11 (Benign Overfitting). Suppose that all the conditions in Assumptions 2 and 3 are satisfied.
Then, on the same event as in Theorem 7, we have

Empirical Risk: R(f̂Tε) ⩽ ε and Excess Risk: R(f̂Tε)−R(f⋆) ⩽ ε.

Proof. This is an immediate corollary of Theorem 7 and Theorem 10.

68



0 5000 10000 15000 20000 25000 30000
Iteration

10 2

10 1

100

101

102

103

Ri
sk

 (
lo

g-
sc

al
e)

Iteration: 916
Risk: 2.11e-02

Iteration: 5546
Risk: 1.36e-02

Iteration: 15480
Risk: 1.19e-02

Empirical Risk for n = 500
Excess Risk for n = 500
Empirical Risk for n = 1000
Excess Risk for n = 1000
Empirical Risk for n = 1500
Excess Risk for n = 1500

Figure 4: Synthetic Data Experiment: Risk vs.
model complexity plot on synthetic data. In-
creasing both the sample size n and the number
of training iterations simultaneously allows for
reduction of both empirical and excess risks.

0 2000 4000 6000 8000 10000 12000 14000 16000
Iteration

10 2

10 1

100

101

Ri
sk

 (
lo

g-
sc

al
e)

Avg. iteration: 518 +/- 5.50e+02
Avg. risk: 3.02e+01 +/- 8.83e+01

Avg. iteration: 4965 +/- 1.41e+03
Avg. risk: 1.38e-02 +/- 2.76e-03 Avg. iteration: 14191 +/- 1.73e+03

Avg. risk: 1.23e-02 +/- 6.28e-04

n=500
n=1000
n=1500

Figure 5: Synthetic Data Experiment: The av-
erage iteration at which the excess risk crosses
and stays over the empirical evaluated over 10
runs with different random initializations to the
neural network. The bars indicate the standard
deviation on the iteration number. Note the
clear shift to the right and down.

D.8 Additional Experimental Evaluations
In this section, we provide additional experimental evaluations.

Synthetic Data Experiments. For the synthetic data experiments, we use d = 3, and the first
eigenfunction of the NTK operator H as f⋆, i.e., the spherical harmonic of order 1, obtained by the
Rodrigues representation (Müller, 1998, p.22, Lemma 4) on the Legendre polynomials (Müller, 1998, p.16,
(§2.32) & Lemma 2) (see also Section D.2.3). For x = (x1, x2, x3)

⊤ ∈ R3, we have: f⋆(x) = P1(3;x3) = x3,
where we denoted by P1(3; ·) the Legendre polynomial of order 1 in dimension 3. In other words, given
a point on the sphere, f⋆ simply maps it to the value of the third coordinate. By construction, this
gives Lε = 1 and λε =

1
12 (c.f. eqn. (4.1)). We use m = 750000. The xi’s are sampled uniformly from

unit sphere. The yi’s (the target variables during the training process) are constructed as f⋆(xi) plus
mean-zero Gaussian noise with standard deviation 0.2.

In Figure 4, we plot empirical (dashed) and excess (solid) risk curves against gradient descent iterations
T for various sample sizes n, using matching colors for each n. The results are similar to what we observed
in Section 4.3. The empirical risk decreases with T , with smaller n yielding stronger overfitting. Excess
risk exhibits a U-shaped curve, first decreasing then increasing. The ⋆ markers denote the point where
excess risk overtakes empirical risk and remains higher. These ⋆ markers shift lower and rightward as n
increases. This supports our theory that, with sufficient data and appropriate model complexity, both
risks can be simultaneously minimized.16 We also perform multiple runs, with different initializations.
These results are presented in Figure 5.

Experiments on Abalone Dataset. We now discuss additional experiments on the Abalone dataset
disuccsed in Section 4.3. In Figure 6, we plot the risk vs. model complexity curves (with m = 10000) by
varying the noise levels. We add mean-zero Gaussian noise with standard deviation in {0.1, 0.2, 0.3} to the
target variable in the training data. The results are consistent with our previous findings. As expected,
for same n, across the various plots in Figure 6, we see that higher noise levels shift the crossing point
(marked by ⋆) to later iterations.

In Figure 7, we show the result across multiple runs, with different random initializations to the neural
network.

Experiments on Wine Dataset. For our next real data experiment, we use the Wine dataset (Aeber-
hard and Forina, 1992) where the input dimension d = 11. The goal is to predict wine quality from various

16We could equally analyze the trough of the excess risk curve and reach the same conclusion; we focus on the crossover
points for convenience, since both risks are equal at those points.

69



0 2000 4000 6000 8000 10000
Iteration

0.3

1.0

3.2
Ri

sk
 (

lo
g-

sc
al

e)

Iteration: 27
Risk: 7.56e-01

Iteration: 1331
Risk: 3.79e-01

Iteration: 1807
Risk: 3.76e-01

Empirical Risk for n = 1000
Excess Risk for n = 1000
Empirical Risk for n = 2000
Excess Risk for n = 2000
Empirical Risk for n = 3000
Excess Risk for n = 3000

(a) Gaussian noise (mean-zero, std. dev 0.1)

0 2000 4000 6000 8000 10000
Iteration

0.3

1.0

3.2

Ri
sk

 (
lo

g-
sc

al
e)

Iteration: 140
Risk: 6.32e-01

Iteration: 2151
Risk: 3.79e-01 Iteration: 3207

Risk: 3.77e-01

Empirical Risk for n = 1000
Excess Risk for n = 1000
Empirical Risk for n = 2000
Excess Risk for n = 2000
Empirical Risk for n = 3000
Excess Risk for n = 3000

(b) Gaussian noise (mean-zero, std. dev 0.2)

0 2000 4000 6000 8000 10000
Iteration

0.3

1.0

3.2

Ri
sk

 (
lo

g-
sc

al
e)

Iteration: 480
Risk: 5.80e-01

Iteration: 4110
Risk: 3.81e-01 Iteration: 6968

Risk: 3.79e-01

Empirical Risk for n = 1000
Excess Risk for n = 1000
Empirical Risk for n = 2000
Excess Risk for n = 2000
Empirical Risk for n = 3000
Excess Risk for n = 3000

(c) Gaussian noise (mean-zero, std. dev 0.3)

Figure 6: Abalone Data Experiment: Results with varying noise levels. The figure (b) is duplicated from
Section 4.3.

features. We standardized inputs and targets, and add Gaussian noise during training. Figure 8 shows
the risk vs. model complexity plot, leading to the same conclusions as with our previous experiments.

70



0 500 1000 1500 2000 2500
Iteration

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

Ri
sk

 (
lo

g-
sc

al
e)

Avg. iteration: 222 +/- 2.27e+02
Avg. risk: 8.34e-01 +/- 8.04e-01

Avg. iteration: 911 +/- 6.48e+02
Avg. risk: 4.24e-01 +/- 3.11e-02

Avg. iteration: 1704 +/- 8.95e+02
Avg. risk: 4.07e-01 +/- 1.93e-02

n=1000
n=2000
n=3000

Figure 7: Abalone Data Experiment: The average iteration at which the excess risk crosses and stays
over the empirical evaluated over 10 runs with different random initializations. This is for the setting
discussed in Section 4.3, with Gaussian noise (mean-zero, std. dev 0.2). Again notice the shift to the right
and down of where the crossing occurs.

0 2000 4000 6000 8000 10000 12000 14000
Iteration

10 1

100

101

102

103

Ri
sk

 (
lo

g-
sc

al
e)

Iteration: 549
Risk: 1.45e+00

Iteration: 1970
Risk: 1.34e+00

Iteration: 4383
Risk: 1.33e+00

Empirical Risk for n = 1000
Excess Risk for n = 1000
Empirical Risk for n = 2000
Excess Risk for n = 2000
Empirical Risk for n = 3000
Excess Risk for n = 3000

Figure 8: Wine Data Experiment: Risk vs. model complexity plot with varying sample size n. We use
m = 100000.

71


	1 Introduction
	2 Adding Sample Size to the Risk vs. Model Complexity Plots
	3 Benign Overfitting with Kernel Ridge Regression (KRR)
	4 Bengin Overfitting with Trained Two-Layer ReLU Networks
	4.1 Assumptions on Parameters
	4.2 Establishing Benign Overfitting
	4.3 Experiments

	5 Conclusion
	A Additional Related Works
	B Additional Preliminaries
	B.1 Vectors and Matrices
	B.2 Standard Distributions and Concentration Results
	B.3 Functions, Operators and Reproducing Kernel Hilbert Spaces
	B.4 Integral Operator Technique for RKHS
	B.5 Real Induction
	B.6 U- and V-Statistics

	C Missing Details from Section 3
	D Missing Details from Section 4
	D.1 Index of Notations
	D.2 NTK Theory of Two-Layer ReLU Networks
	D.2.1 Neural Tangent Kernel
	D.2.2 Initialization and Analytical Counterparts
	D.2.3 Spectral Theory for Neural Tangent Kernels
	D.2.4 Full-Batch Gradient Flow

	D.3 High Probability Results
	D.3.1 Randomness due to Weight Initialization
	D.3.2 Randomness due to Sampling of Data
	D.3.3 Randomness due to both Weight Initialization and Sampling

	D.4 Proof of Overfitting
	D.5 Proof of Small Approximation Error
	D.6 Proof of Small Estimation Error
	D.7 Putting it all Together: Generalization and Benign Overfitting
	D.8 Additional Experimental Evaluations


