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Abstract
Dimensionality reduction is a popular approach
for dealing with high dimensional data that leads
to substantial computational savings. Random
projections are a simple and effective method
for universal dimensionality reduction with rig-
orous theoretical guarantees. In this paper, we
theoretically study the problem of differentially
private empirical risk minimization in the pro-
jected subspace (compressed domain). Empirical
risk minimization (ERM) is a fundamental tech-
nique in statistical machine learning that forms
the basis for various learning algorithms. Start-
ing from the results of (Chaudhuri & Monteleoni,
2009; Chaudhuri et al., 2011), there is a long line
of work in designing differentially private algo-
rithms for empirical risk minimization problems
that operate in the original data space (Chaudhuri
& Monteleoni, 2009; Chaudhuri et al., 2011; Ru-
binstein et al., 2009; Kifer et al., 2012; Jain et al.,
2012; Smith & Thakurta, 2013; Jain & Thakurta,
2013; 2014; Bassily et al., 2014; Duchi et al.,
2013; Talwar et al., 2015a).

In this paper, we answer this question in affir-
mative, by showing that for the class of gen-
eralized linear functions, we can obtain ex-
cess risk bounds of Õ(w(Θ)2/3/n1/3) under ε-
differential privacy, and Õ(

√
w(Θ)/n) under

(ε, δ)-differential privacy, given only the pro-
jected data and the projection matrix.1 Here n
is the sample size and w(Θ) is the Gaussian
width of the parameter space Θ that we optimize
over. Our strategy is based on adding noise for
privacy in the projected subspace and then lift-
ing the solution to original space by using high-
dimensional estimation techniques. A simple
consequence of these results is that, for a large
class of ERM problems, in the traditional setting

1The Õ(·) notation hides polylog factors in n.
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(i.e., with access to the original data), under ε-
differential privacy, we improve the worst-case
risk bounds of (Bassily et al., 2014).

1. Introduction
Curse of dimensionality is a well-established obstacle in
machine learning affecting aspects such as the accuracy,
computation time, storage space, and communication cost
of many common tasks. Therefore, a general strategy
for tackling many high-dimensional learning tasks is first
transforming from the data domain to some appropriate
compressed measurement domain, and then performing the
learning task in the measurement domain. This idea has led
to the development of the field of compressed learning (El-
dar & Kutyniok, 2012), where the general goal is to per-
form a machine learning task in the compressed measure-
ment domain with almost the same performance guarantee
as that achievable in the original data domain. Efficiency
gains achievable through compressed learning have been
well documented for variety of common machine learning
tasks (Arriaga & Vempala, 2006; Davenport et al., 2006;
Maillard & Munos, 2009; Fard et al., 2012; Kabán, 2014;
Calderbank et al., 2009; Wright et al., 2009). In addition
to the efficiency gains, these techniques also work success-
fully in situations where one cannot observe the data do-
main because collecting data might be difficult or expen-
sive. In this case, by learning in the compressed domain,
one avoids the cost of recovering back the data in the high-
dimensional domain.

A common approach for dimensionality reduction (com-
pression) is using the technique of random projec-
tions (Vempala, 2005; Mahoney, 2011), where the orig-
inal high-dimensional data is projected onto a lower-
dimensional subspace using some appropriately chosen
random matrix. Random projections, such as the popular
Johnson-Lindenstrauss transform and its variants, preserve
the structure of the original data space, and hence can be
used as a way to reduce the cost of the learning process per-
ceptibly, while preserving the performance approximately.
For high-dimensional data, a random projection can lead
to substantial savings in resources such as storage space,
transmission bandwidth, and processing time.
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Machine learning algorithms are frequently run on sensi-
tive data, and this has motivated the study of learning al-
gorithms that have good performance guarantees while sat-
isfying a rigorous notion of privacy called differential pri-
vacy (Dwork et al., 2006b). There currently exist differen-
tially private algorithms for many statistical and machine-
learning tasks such as classification, regression, PCA, clus-
tering, density estimation, among others. We refer the
reader to recent surveys by Sarwate and Chaudhuri (Sar-
wate & Chaudhuri, 2013), and by Dwork and Roth (Dwork
& Roth, 2013) for an overview of recent developments in
machine learning with differential privacy.

In this paper, we theoretically study private compressed
learning in the framework of Empirical Risk Minimiza-
tion (ERM). In the traditional (uncompressed) empirical
risk minimization framework, we are given n datapoints
z1, . . . , zn from some domain Z , and a closed, convex set
C ⊆ Rd, and the goal is minimize 1

n

∑n
i=1 f(θ; zi) over

θ ∈ C. The loss function f : C × Z → R is the loss as-
sociated with a single datapoint. We will generally assume
that f(·; z) is convex and λ-Lipschitz2 for all z ∈ Z .

In this paper, we focus on a popular class of loss func-
tions, called generalized linear functions (Shalev-Shwartz
et al., 2009; Jain & Thakurta, 2014; Ullman, 2015), where
the loss function f(θ; z) has a generalized linear form:
f(θ; z) = `(〈x, θ〉; y), with z = (x, y) and Z ⊆ Rd × R.
We will assume that ` : R × R → R is convex with re-
spect to its first argument (over domain R). This formula-
tion, that has also been used in the previous works on dif-
ferentially private convex ERM (Kifer et al., 2012; Jain &
Thakurta, 2014; Bassily et al., 2014; Ullman, 2015), cap-
tures the supervised learning of a linear predictor with a
convex loss function, where `(〈x, θ〉; y) is the loss of pre-
dicting 〈x, θ〉 when the true target is y.

Given n datapoints (samples), (x1, y1), . . . , (xn, yn)

drawn from some universe Rd × R, the M-estimator θ̂ as-
sociated with a given a function

L(θ; (x1, y1), . . . , (xn, yn)) =
1

n

n∑
i=1

`(〈xi, θ〉; yi)

is defined as:

θ̂ ∈ argminθ∈C L(θ; (x1, y1), . . . , (xn, yn)). (1)

As mentioned above, this type of program captures a vari-
ety of important learning problems, e.g., the MLE (Maxi-
mum Likelihood Estimators) for linear regression is cap-
tured by setting `(〈x, θ〉; y) = (y − 〈x, θ〉)2. Simi-
larly, the MLE for logistic regression is captured by set-
ting `(〈x, θ〉; y) = ln(1 + exp(−y〈θ,x〉)). Another com-
mon example is the support vector machine (SVM), where
`(〈x, θ〉; y) = hinge(y〈θ,x〉), where hinge(a) = 1 − a if
a ≤ 1 and 0 otherwise.

2Throughout this paper, we measure Lipschitzness with re-
spect to L2-norm in the input space.

In the empirical risk minimization setting, the success
of an algorithm is measured by worst-case (over inputs
(x1, y1), . . . , (xn, yn)) excess empirical risk, defined as:

L(θ̃; (x1, y1), . . . , (xn, yn))

−min
θ∈C
L(θ; (x1, y1), . . . , (xn, yn)), (2)

where θ̃ is the output of the algorithm. We would like to
guarantee that with high probability (or expectation over
coin tosses of the algorithm) the excess empirical risk is
small. For generalized linear functions, a bound on ex-
cess empirical risk also translates into a bound on the
generalization error, using a generic conversion theorem
of (Shalev-Shwartz et al., 2009) (details omitted here).

In the traditional (uncompressed) setting, when the algo-
rithm gets access to the true data, private convex ERM
mechanisms have been investigated extensively in the liter-
ature under both ε- and (ε, δ)-differential privacy notions.
Starting with the results of Chaudhuri et al. (Chaudhuri
& Monteleoni, 2009; Chaudhuri et al., 2011) private con-
vex ERM problems have been studied in various settings
including the low-dimensional setting (Rubinstein et al.,
2009; Kifer et al., 2012), high-dimensional sparse regres-
sion setting (Kifer et al., 2012; Smith & Thakurta, 2013),
online learning setting (Jain et al., 2012; Thakurta & Smith,
2013; Jain & Thakurta, 2014; Mishra & Thakurta, 2015),
local privacy setting (Duchi et al., 2013), interactive set-
ting (Jain & Thakurta, 2013; Ullman, 2015), and streaming
setting (Kasiviswanathan et al., 2016). Bassily et al. (Bass-
ily et al., 2014) showed that for a general convex loss func-
tion f(θ; z) that for every z is 1-Lipschitz the expected ex-
cess empirical is at most Õ(

√
d/n) under (ε, δ)-differential

privacy and O(d/n) under ε-differential privacy (ignoring
the dependence on other parameters for simplicity).3 They
also showed that these bounds cannot be improved in gen-
eral, even for generalized linear functions. Talwar et al.
(Talwar et al., 2015a;b) recently showed that for a large
class of ERM problems, under (ε, δ)-differential privacy,
the above worst-case bound can be improved by exploiting
properties of the parameter space C. Somewhat surpris-
ingly, even though based on different techniques, like our
results, the bounds presented in (Talwar et al., 2015a;b) also
depend on the, Gaussian width of C (a geometric quantity,
defined below). Understanding the exact role of Gaussian
width in differentially private ERM is an interesting open
question. In the non-private world, Gaussian width (some-
times called, Gaussian complexity), plays an important role
in statistical learning theory, and has been used as a mea-
sure of complexity of a function class in statistical learning
theory, see (Mendelson, 2004).

Compressed Learning Problem Formulation. Let Φ ∈
Rm×d be a random projection matrix. In this paper,
we use the popular and wide class of subgaussian ma-
trices for random projection. We define the measure-

3Better bounds can be achieved for strongly convex loss func-
tions (Bassily et al., 2014; Talwar et al., 2015a).
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ment domain M as: M = {(Φx, y) : (x, y) ∈
Z}. In other words, M is a compressed representation
of Z . Our goal is to output an estimator (while sat-
isfying the constraints of differential privacy) that mini-
mizes the empirical risk (2) given access to only to the
compressed representation of (x1, y1), . . . , (xn, yn) (i.e.,
(Φx1, y1), . . . , (Φxn, yn)) and Φ.4 This compressed set-
ting is a strict generalization of the traditional setting where
the algorithm gets access to (x1, y1), . . . , (xn, yn). Our re-
sults also trivially hold for the traditional setting, as given
(x1, y1), . . . , (xn, yn), we can pick Φ and generate the in-
put (Φx1, y1), . . . , (Φxn, yn) for our proposed algorithm.

Our Contributions. We primarily make two contribu-
tions in this paper. A summary of our results appear in
Table 1. All the presented algorithms run in time polyno-
mial in n and d.

(a) Compressed Learning. A natural first question is
whether non-trivial5 private ERM algorithms exist that
operate only with compressed data. In this paper, we an-
swer this question in affirmative. Using techniques from
convex geometry and high-dimensional estimation, we
present a generic mechanism that transforms any differ-
entially private ERM algorithm to provide excess risk
bounds from compressed data. The idea is to add noise
for privacy in the compressed domain, and then “lift”
the result back to the original domain. Our analysis
is based on exploiting the geometric structure of C.
The geometric parameter, Gaussian width, defined as
w(C) = Eg∈N (0,1)d [supθ∈C〈θ,g〉],6 plays an important
role in our analysis, and shows up repeatedly as a geo-
metric measure of the size of the set C. For the impor-
tant class of generalized linear functions, using the pri-
vate ERM algorithms from (Bassily et al., 2014), we ob-
tain an excess empirical risk bound of ≈ w(C)2/3/n1/3

for achieving ε-differential privacy, and ≈
√
w(C)/n

for achieving (ε, δ)-differential privacy.

(b) Traditional Learning (under ε-differential privacy).
Our bounds on compressed learning also directly trans-
late to the traditional ERM setting. We obtain the first
excess risk bounds, under ε-differential privacy, that go
beyond the worst-case bounds of O(d/n) from (Bass-
ily et al., 2014). The techniques presented by (Talwar
et al., 2015a;b) provide only (ε, δ)-differential privacy
guarantees (i.e., δ has to be greater than 0). There are
many simple consequences of our result. For example,
we obtain an ε-differentially private Lasso algorithm

4In general, given Φx, it is not possible to reconstruct x with-
out further assumptions on x.

5There is a trivial private ERM algorithm that ignores the input
and outputs any θ ∈ C. The excess empirical risk of this algorithm
is 2λL‖C‖2, where λL is the Lipschitz constant of L. All bounds
presented in this paper, as also true for all other previous results
in the private ERM literature, are only interesting in the regime
where they are less than this trivial bound.

6For a C contained in a unit L2-ball, w(C) is at most O(
√
d),

and in general is significantly smaller, see Section 2.

with excess risk Õ(1/n1/3), assuming all the input dat-
apoints have bounded L2-norm. Previous best bounds
here (from (Bassily et al., 2014)) had a polynomial de-
pendence on the dimension.

Other Related Work. (Jain & Thakurta, 2014) gave
dimension-independent expected excess risk bounds for the
case generalized linear functions with a strongly convex
regularizer and assuming that C = Rd (unconstrained op-
timization). Note that in this paper, we do not make any
strong convexity assumptions and our results hold for the
more interesting constrained optimization.

Kifer et al. (Kifer et al., 2012), and Smith and
Thakurta (Smith & Thakurta, 2013) studied the problem of
releasing Lasso estimator privately under certain assump-
tions about the instance (restricted strong convexity and
mutual incoherence). Under these assumptions, they ob-
tain excess risk of O(polylog(d)/n). However, these as-
sumptions on the data are rather strong and may not hold in
practice (Talwar et al., 2015a;b). Without these data depen-
dent assumptions, (Talwar et al., 2015a;b) present an (ε, δ)-
differentially private Lasso algorithm with excess risk of
Õ(log(d)/n1/3). However, the question of designing a pri-
vate Lasso estimator under ε-differential privacy whose ex-
cess risk grows logarithmically in the dimension size d was
still open, which we resolve here. We perform a more de-
tailed comparison with the results of Talwar et al. in Sec-
tion 4.

Random projections have been used as a tool to design (dif-
ferentially) private algorithms in many other problem set-
tings. Blocki et al. (Blocki et al., 2012) have shown that if
Φ is a Gaussian Johnson-Lindenstrauss matrix of appropri-
ate dimension, then ΦX is differentially private if the least
singular value ofX is “sufficiently” large. HereX ∈ Rn×d
is a data matrix of n points in d dimensions. Note that
ΦX does not reduce the dimensionality of the data but
rather generates a set of fewer datapoints. The bound on
the least singular value was recently improved by (Sheffet,
2015). Wang et al. (Wang et al., 2015) show that for the
problem of subspace clustering achieving, random projec-
tions can be helpful for both computational efficiency and
privacy protection. Kenthapadi et al. (Kenthapadi et al.,
2013) use Johnson-Lindenstrauss transform to publish a
private sketch that enables estimation of the distance be-
tween users. Zhou et al. (Zhou et al., 2009b) provide a
technique of generating synthetic data using random linear
or affine transformations. Random projections have also
been used to achieve various other weaker privacy guaran-
tees (Duncan et al., 1991; Zhou et al., 2009a).

2. Preliminaries
Notation and Data Normalization. We denote [n] =
{1, . . . , n}. Vectors are in column-wise fashion, denoted
by boldface letters. For a vector v, ‖v‖p for (1 ≤ p ≤ ∞)
denotes its Lp-norm. For p = 2, we drop the subscript
and use ‖v‖ to denote its Euclidean (L2-) norm. The d-
dimensional unit ball in Lp-norm centered at origin is de-
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Problem Setting ε-differential privacy (ε, δ)-differential privacy
Compressed Learning

(under random projections) Õ
(
ψ4/3λ`w(C)2/3‖C‖2

(εn)1/3

)
Õ

(
ψλ`

√
w(C)‖C‖2log2(1/δ)√

εn

)
Traditional (uncompressed) Learning Õ

(
λ`w(C)2/3‖C‖2

(εn)1/3

)
Õ

(
Γ
1/3
` (λ`w(C))2/3 log2(1/δ)

(εn)2/3

)
(Talwar et al., 2015b)

Table 1. Upper bounds on the excess risk under differential privacy for the convex ERM problem: minθ∈C
1
n

∑n
i=1 `(〈xi, θ〉; yi) for

λ`-Lipschitz convex ` and general convex set C. Here w(C) is the Gaussian width of C, ‖C‖2 is the diameter of C, ψ is the subgaussian
norm of random vectors used in the projection matrix, and Γ` is the curvature constant of `. For traditional (uncompressed) learning,
under (ε, δ)-differential privacy, better bounds can be obtained for some specific C’s (Talwar et al., 2015a;b). All the uncited results
appear in this paper.

noted by Bdp , and the d-dimensional Euclidean unit sphere
is denoted by Sd−1. For a variable n, we use poly(n) to de-
note a polynomial function of n and polylog(n) to denote
poly(log(n)).

Throughout this paper, we assume that all the inputs are
L2-normalized with ‖x‖≤ 1 and |y|≤ 1. This is for sim-
plicity, and our results extend to the case without this nor-
malization (with probably an increased Lipschitz constant).
Also as is typical in random projection based analyses, we
assume that the xi’s are selected independent of the projec-
tion matrix Φ.

We refer the reader to (Boyd & Vandenberghe, 2004) for
standard definitions in convex optimization. For a set of
vectors, we define its diameter as the maximum attained
L2-norm in the set.
Definition 1. (Diameter of Set) The diameter of a closed
set C ⊆ Rd, is defined as ‖C‖2= supθ∈C‖θ‖.
Definition 2. (Lipschitz Functions over θ) A loss function
f : C × Z → R is λf -Lipschitz with respect to θ over
the domain C, if for any z ∈ Z , and θa, θb ∈ C, we have
|f(θa; z)− f(θb; z)|≤ λf‖θa − θb‖.

For a generalized linear function `(〈x, θ〉; y), let λ` denote
the Lipschitz constant of ` in the first argument. The fol-
lowing claim easily follows from our normalization.
Claim 2.1. Let function `(〈x, θ〉; y) be λ`-Lipschitz in the
first argument over the domain R. Then ` is λ`-Lipschitz
with respect to θ.

Proof. Consider θa, θb ∈ C, x ∈ Rd with ‖x‖≤ 1, y ∈ R
with |y|≤ 1,

|`(〈x, θa〉; y)− `(〈x, θb〉; y)|
= |`(〈x, θa〉; y)− `(〈x, θa〉+ 〈x, θb − θa〉; y)|
≤ |λ`〈x, θb − θa〉|≤ λ`‖θa − θb‖.

Since this holds for every x and y in the chosen domain,
this completes the proof.

For common loss functions, λ` is small. For squared loss,
used in linear regression, the loss function is 2(‖C‖2+1)-
Lipschitz; for logistic loss, used in logistic regression, the
loss function is 1-Lipschitz; for hinge loss, used in SVM,
the loss function is 1-Lipschitz.

Subgaussian matrices are a popular choice for random pro-
jections (matrix Φ).

Definition 3 (Subgaussian Random Variable and Vector).
We call a random variable a ∈ R subgaussian if there ex-
ists a constant C > 0 if Pr[|a|> t] ≤ 2 exp(−t2/C2) for
all t > 0. We say that a random vector a ∈ Rd is subgaus-
sian if the one-dimensional marginals 〈a,b〉 are subgaus-
sian random variables for all b ∈ Rd.

The class of subgaussian random variables includes many
random variables that arise naturally in data analysis, such
as Gaussian, Bernoulli, spherical, bounded (where the ran-
dom variable a satisfies |a|≤ M almost surely for some
fixedM ). The natural generalizations of these random vari-
ables to higher dimension are all subgaussian random vec-
tors. For many isotropic convex sets7 K (such as the hy-
percube), a random vector a uniformly distributed in K is
subgaussian.

Definition 4 (Norm of Subgaussian Random Variable and
Vector). The ψ2-norm of a subgaussian random variable
a ∈ R, denoted by ‖a‖ψ2 is:

‖a‖ψ2= inf
{
t > 0 : E[exp(|a|2/t2)] ≤ 2

}
.

The ψ2-norm of a subgaussian random vector a ∈ Rd is:

‖a‖ψ2
= sup

b∈Sd−1

‖〈a,b〉‖ψ2
.

Our analysis is based on exploiting the geometric proper-
ties of C. We use the well-studied quantity of Gaussian
width that captures the L2-geometric complexity of C.

Definition 5 (Gaussian Width). Given a closed set S ⊆
Rd, its Gaussian width w(S) is defined as:

w(S) = Eg∈N (0,1)d [sup
a∈S
〈a, g〉].

In particular, w(S)2 can be thought as the “effective di-
mension” of S. Many popular convex sets have low Gaus-

7A convex set K in Rd is called isotropic if a random vector
chosen uniformly from K according to the volume is isotropic. A
random vector a ∈ Rd is isotropic if for all b ∈ Rd, E[〈a,b〉2] =
‖b‖2.
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sian width, e.g., the width of both the unit L1-ball in Rd
(Bd1 ) and the standard d-dimensional probability simplex
are both Θ(

√
log d), and the width of any ball Bdp for

1 ≤ p ≤ ∞ is ≈ d1−1/p. For a set C contained in the
Bd2 , w(C) is always O(

√
d).

Differential Privacy Background. Differential privacy
is a rigorous notion of privacy that emerged from a long
line of work in theoretical computer science (Dwork et al.,
2006b). We say two datasets D and D′ of size n are neigh-
bors if they differ in one entry.

Definition 6. (Dwork et al., 2006b;a) A randomized algo-
rithm Alg is (ε, δ)-differentially private if for all neighbor-
ing datasets D,D′ and for all eventsR in the output space
ofAlg, we have Pr[Alg(D) ∈ R] ≤ exp(ε)·Pr[Alg(D′) ∈
R] + δ, where the probability is taken over the random-
ness of the algorithm. When δ = 0, the Algorithm is ε-
differentially private.

3. Algorithm for the Compressed Setting
In this section, we present a generic mechanism (Mech-
anism PROJERM) for private risk minimization on com-
pressed data. Instantiating the generic mechanism with
recent differentially private algorithms of (Bassily et al.,
2014) provides our main upper bounds (Theorem 3.11).
Remember that in the compressed setting the algorithm
gets access (to only) (Φx1, y1), . . . , (Φxn, yn) and the ma-
trix Φ, and the goal of the algorithm is to privately output an
estimator that minimizes the empirical risk (2). In the next
section, we discuss a simple extension of our results to the
traditional (uncompressed) setting and its consequences.

We focus on a large class of optimization problems ex-
pressed as a sum of a generalized linear loss function over
individual datapoints.

In the following, let θ̂ be the true minimizer of
L(θ; (x1, y1), . . . , (xn, yn) = 1

n

∑n
i=1 `(〈xi, θ〉; yi), i.e.,

θ̂ ∈ argminθ∈C
1

n

n∑
i=1

`(〈xi, θ〉; yi). (3)

Let ` be λ`-Lipschitz in the first argument. By Claim 2.1,
` is λ`-Lipschitz with respect to θ over the domain C. The
Lipschitz constant of L (λL) satisfies: λL ≤ λ`.
One of the most celebrated result in geometry, the Johnson-
Lindenstrauss (JL) Lemma, states that for any set S ⊆ Rd,
given γ > 0 and m = Ω(log|S|/γ2), there exists a map
that embeds the set into Rm, distorting all pairwise dis-
tances within at most 1 ± γ factor. This transform has be-
come a fundamental tool in dimensionality reduction, and
there are several constructions of the map based on random
projections (Bourgain et al., 2015).

The bound on m in JL lemma is optimal for an arbitrary
set S, however if S, has a special structure then the depen-
dence of m can be improved. This was first investigated by
Gordon (Gordon, 1988), who showed that one can embed a

set of points S in Rd into a much lower-dimensional space
Rm using a Gaussian matrix while approximately preserv-
ing the Euclidean norms of the vectors in S, provided that
Gaussian width of S is small. This result has been used in
several interesting applications in high-dimensional convex
geometry, statistics, and compressed sensing.

We use the following generalization of Gordon’s theorem
by Dirksen (Dirksen, 2014), which is based on using sub-
gaussian matrices for the projection.

Theorem 3.1 ((Dirksen, 2014)). Let Φ̃ be an m × d ran-
dom matrix, whose rows φ>1 , . . . , φ

>
m are i.i.d., mean-zero,

isotropic, subgaussian random vectors in Rd with ψ =
‖φi‖ψ2 . Let Φ = Φ̃/

√
m. Let S be a set of points in Rd.

There is a constant C > 0 such that for any 0 < γ, β < 1,

Pr

[
sup
a∈S

∣∣‖Φa‖2−‖a‖2
∣∣ ≥ γ‖a‖2] ≤ β,

provided that m ≥ Cψ4

γ2 max
{
w(S)2, log

(
1
β

)}
.

As a simple corollary to the above theorem it also follows
that,

Corollary 3.2. Under the setting of Theorem 3.1, there ex-
ists a constant C ′ > 0 such that for any 0 < γ, β < 1

Pr

[
sup

a,b∈S
|〈Φa,Φb〉 − 〈a,b〉| ≥ γ‖a‖‖b‖

]
≤ β,

provided that m ≥ C′ψ4

γ2 max
{
w(S)2, log

(
1
β

)}
.

Throughout the rest of this paper, we are going to assume
that γ < 1 (γ in fact will be set much smaller). Consider the
following modified version of the optimization objective
from (3),

Lcomp(θ; (x1, y1), . . . , (xn, yn); Φ)

=
1

n

n∑
i=1

`(〈Φxi,Φθ〉; yi). (4)

Since in the compressed setting, we have access to
(Φxi, yi)’s, we can solve (4). Our idea will be to privately
minimize (4) problem over the domain ΦC, and use the re-
sult to bound the excess risk. Let ΦC = {ϑ ∈ Φθ : θ ∈ C}.
Note for a convex C, ΦC is also convex.

Let λLcomp denote the Lipschitz constant of the function
`(〈Φx, ϑ〉; y) with respect to ϑ over the domain ΦC:

λLcomp
=

sup(x,y)∈(x1,y1),...,(xn,yn)
ϑa,ϑb∈ΦC

|`(〈Φx,ϑa〉;y)−`(〈Φx,ϑb〉;y)|
‖ϑa−ϑb‖ .

Note that in the above definition of λLcomp
, (x, y) is re-

stricted to any fixed collection of n elements. The follow-
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ing lemma shows for large enough m, with probability at
least 1− β, that λLcomp

is at most 2λ`. Remember that the
Lipschitz constant of L is at most λ`.

Lemma 3.3. Let Φ be a random matrix as defined in The-
orem 3.1 with m = Θ((ψ4/γ2) log(n/β)) for β > 0. Then
with probability, at least 1 − β, the Lipschitz constant of
Lcomp (λLcomp

) is at most 2λ` with respect to ϑ over the
domain ΦC.

Proof. We first investigate the function `(〈Φxi, ϑ〉; yi).
Consider ϑa, ϑb ∈ ΦC,

|`(〈Φxi, ϑa〉; yi)− `(〈Φxi, ϑb〉; yi)|
= |`(〈Φxi, ϑa〉; yi)− `(〈Φxi, ϑa〉+ 〈Φxi, ϑb − ϑa〉; yi)|
≤ |λ`〈Φxi, ϑb − ϑa〉|.

Using Theorem 3.1, if

m = Θ((ψ4/γ2) max{log n, log(1/β)}),

then with probability at least 1−β, ‖Φxi‖≤ (1+γ)‖xi‖≤
2‖xi‖≤ 2. Therefore, with probability at least 1− β,

|`(〈Φxi, ϑa〉; yi)− `(〈Φxi, ϑb〉; yi)|≤ 2λ`‖ϑb − ϑa‖.

Taking a union bound over all i’s, with probability at least
1−βn, for all i ∈ [n], |λ`〈Φxi, ϑb−ϑa〉|≤ 2λ`‖ϑb−ϑa‖.
Replacing β by β/n gives the proof.

The following lemma follows from Lipschitz properties of
` and Theorem 3.1.

Lemma 3.4. Let Φ be a random matrix as defined in The-
orem 3.1 with m = Θ((ψ4/γ2) log(n/β)) for β > 0. Then
with probability at least 1− β, for every (xi, yi)

`(〈Φxi,Φθ̂〉; yi) ≤ `(〈xi, θ̂〉; yi) + λ`γ‖C‖2.

Proof. If S is the set of points x1, . . . ,xn, θ̂, then as men-
tioned above w(S) = O(

√
log n). For any i ∈ [n], using

Corollary 3.2, with probability at least 1− β,

`(〈Φxi,Φθ̂〉; yi) ≤ `(〈xi, θ̂〉; yi) + λ`γ‖C‖2. (5)

Taking a union bound over all i’s and replacing β by β/n
completes the proof.

From Lemma 3.4, the following lemma is immediate.

Lemma 3.5. Let Φ be a random matrix as defined in The-
orem 3.1 with m = Θ((ψ4/γ2) log(n/β)) for β > 0. Then
with probability at least 1− β,

min
θ∈C

1

n

n∑
i=1

`(〈Φxi,Φθ〉; yi) ≤
1

n

n∑
i=1

`(〈xi, θ̂〉; yi)+λ`γ‖C‖2.

Proof. Since θ̂ ∈ C, by definition,

min
θ∈C
Lcomp(θ; (x1, y1), . . . , (xn, yn); Φ)

≤ Lcomp(θ̂; (x1, y1), . . . , (xn, yn); Φ). (6)

From Lemma 3.4, with probability at least 1− β,

Lcomp(θ̂; (x1, y1), . . . , (xn, yn); Φ)

def
=

1

n

n∑
i=1

`(〈Φxi,Φθ̂〉; yi)

≤ 1

n

n∑
i=1

`(〈xi, θ̂〉; yi) + λ`γ‖C‖2,

where we used the fact that ‖θ̂‖≤ ‖C‖2. Using the above
inequality with (6) completes the proof.

We now present a generic mechanism (Mechanism PRO-
JERM) for privately releasing M-estimator based on min-
imizing (4) under differential privacy. The mechanism is
simple: it “solves” the private ERM problem in the pro-
jected subspace, and then “lifts” back the result to the orig-
inal dimension by solving a linear estimation problem. As
we will see, working in the compressed domain has the
added advantage that the noise added for privacy scales as
≈
√
m.

Mechanism PROJERM is (ε, δ)- or ε-differentially private
based on the algorithm used in Step 1. Post-processing of
the output does not affect the differential privacy guarantee.
Also note that Mechanism PROJERM is differentially pri-
vate independent of the choice of Φ. However, the utility
guarantee of Mechanism PROJERM (Theorem 3.11) will
require Φ to be a subgaussian matrix (as in Theorem 3.1)
with a lower bound on m that will depend among various
parameters, the geometry of C.

In the Step 1 of Mechanism PROJERM any (ε, δ)- or
ε-differentially private ERM algorithm can be used. In
Proposition 3.7, we provide bounds obtained by using the
differentially private ERM algorithms of (Bassily et al.,
2014). Their (ε, δ)-differentially private ERM algorithm
is based on a noisy stochastic variant of the classic gradient
descent algorithm. While their ε-differentially private ERM
algorithm is based on a polynomial time implementation of
the exponential mechanism of McSherry and Talwar (Mc-
Sherry & Talwar, 2007).

Theorem 3.6 ((Bassily et al., 2014), Theorem 2.4). Let
f(θ; z) be a convex loss function that is λ-Lipschitz with
respect to θ over the domain C ⊆ Rd.

1. There exists an (ε, δ)-differentially private algorithm
Aε,δ that on an input dataset z1, . . . , zn outputs θ̃ ∈ C
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Mechanism 1 PROJERM
Input: A random subgaussian matrix Φ ∈ Rm×d, and a dataset D = (Φx1, y1), . . . , (Φxn, yn) of n datapoints from the
domainMΦ = {(Φx, y) : x ∈ Rd, ‖x‖≤ 1, y ∈ R, |y|≤ 1}
Output: θpriv a differentially private estimate of θ̂ ∈ argminθ∈C

1
n

∑n
i=1 `(〈xi, θ〉; yi)

1. Let ϑpriv ←Output of an (ε, δ)-differentially private or an ε-differentially private ERM algorithm solving the following
problem:

argminϑ∈ΦC
1

n

n∑
i=1

`(〈Φxi, ϑ〉; yi)

2. θpriv ← argminθ∈Rd ‖θ‖C subject to Φθ = ϑpriv (can be solved with any convex programming technique)

3. Return: θpriv

such that for any β > 0, with probability at least 1− β,

1

n

n∑
i=1

f(θ̃; zi)−min
θ∈C

1

n

n∑
i=1

f(θ; zi)

= O

(
λ
√
d‖C‖2log3/2(n/δ)

√
log(1/δ) polylog(1/β)

nε

)
.

2. There exists an ε-differentially private algorithmAε that
on an input dataset z1, . . . , zn outputs θ̃ ∈ C such that for
any β > 0, with probability at least 1− β,

1

n

n∑
i=1

f(θ̃; zi)−min
θ∈C

1

n

n∑
i=1

f(θ; zi)

= O

(
λd‖C‖2 polylog(1/β)

nε

)
.

The following proposition follows by combining
Lemma 3.5 with Theorem 3.6. The proposition shows that,
even for a small projected dimension m, the value of the
function Lcomp(θ; (x1, y1), . . . , (xn, yn); Φ) at θ = θpriv

approximates the minimum empirical risk.

Proposition 3.7. Let Φ be a random matrix as defined in
Theorem 3.1 with m = Θ((ψ4/γ2) log(n/β)) for β > 0.
Then the output θpriv of Mechanism PROJERM,

1. When invoked (in Step 1) with Algorithm Aε,δ from The-
orem 3.6, with probability at least 1− β satisfies:

Lcomp(θpriv; (x1, y1), . . . , (xn, yn); Φ)− L(θ̂; (x1, y1), . . . , (xn, yn))

= O

(
λLcomp

√
m‖ΦC‖2log3/2(n/δ)

√
log(1/δ) polylog(1/β)

nε

)
+ λ`γ‖C‖2.

2. When invoked (in Step 1) with Algorithm Aε from Theo-
rem 3.6, with probability at least 1− β satisfies:

Lcomp(θpriv; (x1, y1), . . . , (xn, yn); Φ)− L(θ̂; (x1, y1), . . . , (xn, yn))

= O

(
λLcompm‖ΦC‖2 polylog(1/β)

nε

)
+ λ`γ‖C‖2.

Proof. We discuss the proof for the case of (ε, δ)-
differential privacy (the proof for the case of ε-differential
privacy proceeds similarly by using Theorem 3.6, Part 2).

Since the inputs Φxi’s arem-dimensional, from guarantees
of Theorem 3.6 (Part 1), we know that with probability at
least 1− β,

1

n

n∑
i=1

`(〈Φxi, ϑ
priv〉; yi)−

min
ϑ∈ΦC

1

n

n∑
i=1

`(〈Φxi, ϑ〉; yi)

= O

λLcomp

√
m‖ΦC‖2log3/2(n/δ)

√
log( 1

δ ) polylog( 1
β )

nε

 .

(7)

Notice that by definition,

min
ϑ∈ΦC

1

n

n∑
i=1

`(〈Φxi, ϑ〉; yi)

≡ min
θ∈C

1

n

n∑
i=1

`(〈Φxi,Φθ〉; yi).

Also by construction in Step 2 of Mechanism PROJERM,
ϑpriv = Φθpriv. Substituting these two identities in (7)
provides, that with probability at least 1− β,

1

n

n∑
i=1

`(〈Φxi,Φθ
priv〉; yi)

−min
θ∈C

1

n

n∑
i=1

`(〈Φxi,Φθ〉; yi)

= O(
λLcomp

√
m‖ΦC‖2log3/2(n/δ)

√
log(1/δ) polylog(1/β)

nε
).

Using the bound from Lemma 3.5, gives that with proba-
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bility at least 1− 2β,

1

n

n∑
i=1

`(〈Φxi,Φθ
priv〉; yi)

−min
θ∈C

1

n

n∑
i=1

`(〈Φxi,Φθ〉; yi)

= O

(
λLcomp

√
m‖ΦC‖2log3/2(n/δ)

√
log(1/δ) polylog(1/β)

nε

)
+O(λ`γ‖C‖2).

Replacing β by β/2 completes the proof.

Existence of θpriv. To lift ϑpriv into the original d-
dimensional space, we use recent results about reconstruc-
tion from linear observations (Vershynin, 2014). Since
ϑpriv ∈ ΦC, we know that there exists a θtrue ∈ C, such
that Φθtrue = ϑpriv. Then the goal is to estimate θtrue from
Φθtrue. Again geometry of C (Gaussian width) plays an im-
portant role, as it controls the diameter of high-dimensional
random sections of C (referred to as M? bound (Ledoux &
Talagrand, 2013; Vershynin, 2014)). We refer the reader
to the excellent tutorial by Vershynin (Vershynin, 2014) for
more details.

We define Minkowski functional, as commonly used in ge-
ometric functional analysis and convex analysis.
Definition 7 (Minkowski functional). For any vector θ ∈
Rd, the Minkowski functional of C (a closed set) is the non-
negative number ‖θ‖C defined by the rule: ‖θ‖C= inf{τ ∈
R : θ ∈ τC}.

For the typical situation in ERM problems, where C is a
symmetric convex body, then ‖·‖C defines a norm.

The optimization problem solved in Step 2 of Mecha-
nism PROJERM is convex if C is convex, and in fact is
a linear program is C is a polytope, and hence can be ef-
ficiently solved. The existence of θpriv follows from The-
orem 3.8, which in fact can be used to bound the distance
between θpriv and θtrue (Corollary 3.9).
Theorem 3.8. (Vershynin, 2014; Mendelson et al., 2007)
Let Φ be an m × d matrix, whose rows φ>1 , . . . , φ

>
m are

i.i.d., mean zero, isotropic and subgaussian random vectors
in Rd with ψ = ‖φi‖ψ2 . Let C be a convex set. Given
v = Φu and Φ, let û be the solution to the following convex
program: minu′∈Rd ‖u′‖C subject to Φu′ = v. Then for
any β > 0, with probability at least 1− β,

sup
u:v=Φu

‖u− û‖= O

(
ψ4w(C)√

m
+
ψ4‖C‖2

√
log(1/β)√
m

)
.

Corollary 3.9. If Φ ∈ Rm×d is a subgaussian matrix (as in
Theorem 3.1), then for any β > 0, with probability at least

1− β, ‖θtrue − θpriv‖= O

(
ψ4w(C)√

m
+

ψ4‖C‖2
√

log(1/β)√
m

)
.

One last thing to be verified is that θpriv generated by

Mechanism PROJERM is in C. This is simple as by def-
inition of Minkowski functional, as for any closed set C =
{θ ∈ Rd : ‖θ‖C ≤ 1}. Hence, ‖θtrue‖C≤ 1. By choice
of θpriv in Step 2, ensures that ‖θpriv‖C ≤ ‖θtrue‖C ≤ 1,
which (by definition) shows that θpriv ∈ C.

Now that we have established that θpriv ∈ C exists,
we lower bound Lcomp(θpriv; (x1, y1), . . . , (xn, yn); Φ) in
terms ofL(θpriv; (x1, y1), . . . , (xn, yn)). Later we will use
this lower bound along with Proposition 3.7 to bound the
excess empirical risk.

Lemma 3.10. Let Φ be a random matrix as de-
fined in Theorem 3.1 with m = Θ((ψ4/γ2)(w(C) +√

log n)2 log(n/β)) for β > 0. Then with probability at
least 1− β,

L(θpriv; (x1, y1), . . . , (xn, yn))

≤ Lcomp(θpriv; (x1, y1), . . . , (xn, yn); Φ) + λ`γ‖C‖2.

Proof. Consider the set S as {x1, . . . ,xn} ∪ C, then
w(S) ≤ w(C) +

√
log n. Using an argument similar to

Lemma 3.4 (based on Theorem 3.1), for θpriv ∈ C, with
probability at least 1− β,

Lcomp(θpriv; (x1, y1), . . . , (xn, yn); Φ)

def
=

1

n

n∑
i=1

`(〈Φxi,Φθ
priv〉; yi)

≥ 1

n

n∑
i=1

`(〈xi, θpriv〉; yi)− λ`γ‖C‖2.

This implies that with probability at least 1− β,

Lcomp(θpriv; (x1, y1), . . . , (xn, yn); Φ)

≥ 1

n

n∑
i=1

`(〈xi, θpriv〉; yi)− λ`γ‖C‖2.

Using the definition of L(θpriv; (x1, y1), . . . , (xn, yn))
completes the proof.

Using Lemma 3.10 and Proposition 3.7 provides the fol-
lowing bounds on excess empirical risk. The parameter
γ is chosen to balance various opposing factors. We will
assume that γ = o(1), which in the following theorem
happens when w(C) � n (for achieving (ε, δ)-differential
privacy) and w(C) �

√
n (for achieving ε-differential pri-

vacy). The running time for both these cases is polynomial
in n and m.

Theorem 3.11 (Utility of Mechanism PROJERM). Let Φ
be a random matrix as defined in Theorem 3.1.

1. Then the output θpriv of Mechanism PROJERM when
invoked with Algorithm Aε,δ from Theorem 3.6 and m =
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Θ
(
ψ2εn(w(C)+

√
logn)2 log(n/β)

w(C)

)
for β > 0, with probabil-

ity at least 1− β satisfies:

L(θpriv; (x1, y1), . . . , (xn, yn))− L(θ̂; (x1, y1), . . . , (xn, yn))

= O

(
ψ
√
w(C)λ`‖C‖2log3 n log2( 1

δ ) polylog( 1
β )

√
εn

)
.

2. Then the output θpriv of Mechanism PROJERM when
invoked with Algorithm Aε from Theorem 3.6 and m =

Θ
(
ψ4/3(nε)2/3(w(C)+

√
logn)2 log(n/β)

w(C)4/3

)
for β > 0, with

probability at least 1− β satisfies:

L(θpriv; (x1, y1), . . . , (xn, yn))− L(θ̂; (x1, y1), . . . , (xn, yn))

= O

(
ψ4/3w(C)2/3λ`‖C‖2log2 n polylog( 1

β )

(εn)1/3

)
.

Proof. We first discuss the proof for the case of (ε, δ)-
differential privacy (Part 1). Here, we set

γ =
ψ
√
w(C)√
εn

,

and correspondingly set m as,

m = Θ

(
ψ2εn(w(C) +

√
log n)2 log(n/β)

w(C)

)
.

With the choice of m, with probability 1− β, the diameter
of ΦC (‖ΦC‖2) is at most (1+γ)‖C‖2≤ 2‖C‖2. Using this,
along with Lemma 3.10 and Proposition 3.7 (Part 1) gives
that with probability at least 1− 3β,

L(θpriv; (x1, y1), . . . , (xn, yn))− L(θ̂; (x1, y1), . . . , (xn, yn))

= O

λLcomp

√
m‖C‖2log3/2(n/δ)

√
log( 1

δ ) polylog( 1
β )

nε


+O (λ`γ‖C‖2) .

Using the bound on λLcomp
from Lemma 3.3 gives that with

probability at least 1− 4β,

L(θpriv; (x1, y1), . . . , (xn, yn))− L(θ̂; (x1, y1), . . . , (xn, yn))

= O

λ`√m‖C‖2log3/2(n/δ)
√

log( 1
δ ) polylog( 1

β )

nε


+O (λ`γ‖C‖2) .

Replacing β by β/5, and simplifying the resulting expres-
sion completes the Part 1 of the proof.

For Part 2, we set γ = ψ4/3w(C)2/3
(εn)1/3

and correspondingly set

m as,

m = Θ

(
ψ4/3(nε)2/3(w(C) +

√
log n)2 log(n/β)

w(C)4/3

)
.

The proof follows along the same lines as the case of (ε, δ)-
differential privacy. Here we use Proposition 3.7 (Part 2).

4. Algorithm for the Traditional Setting
Mechanism PROJERM can also be directly utilized
for solving the traditional private empirical risk mini-
mization problem, where the algorithm gets access to
(x1, y1), . . . , (xn, yn). This approach is illustrated in
Mechanism STDERM.

Mechanism STDERM is again (ε, δ)- or ε-differentially
private based on how Mechanism PROJERM is invoked.
The excess empirical risk bound of Mechanism STDERM
follows from Theorem 3.11.

Corollary 4.1 (of Theorem 3.11). The output θpriv of
Mechanism STDERM has the same privacy and excess em-
pirical risk guarantees as that of Mechanism PROJERM
detailed in Theorem 3.11 with ψ = O(1).

Under ε-differential privacy, these are the first bounds that
take the geometry of C into account to obtain lower excess
risk than the worst case bounds of (Bassily et al., 2014).
A simple consequence is improved excess risk bound for
releasing the Lasso estimator under ε-differential privacy.
Given a dataset D = (x1, y1), . . . , (xn, yn) of n data-
points from the domain Z = {(x, y) : x ∈ Rd, ‖x‖≤
1, y ∈ R, |y|≤ 1},8 the Lasso estimator is defined as
argminθ

1
n

∑n
i=1(yi − 〈xi, θ〉)2 subject to θ ∈ cBd1 (where

Bd1 is the unit L1-ball in Rd, and c ∈ R with c > 0). Under
this setting, Theorem 3.11 (Part 2) implies that there exists
an ε-differentially private algorithm for releasing the Lasso
estimator, that with probability at least 1−β, has excess risk
of O(c8/3 log1/3(d) log2(n) polylog(1/β)/(εn)1/3), i.e.,
has only a logarithmic dependence on the dimension d.

We now compare our results with that of (Bassily et al.,
2014; Talwar et al., 2015a;b).

Comparison with the Lower Bound on Private
ERM Risk from (Bassily et al., 2014). Bassily et
al. showed that a simple generalized linear problem
of the form minθ∈Sd−1

1
n

∑n
i=1〈xi, θ〉, has an (ε, δ)-

differentially private excess empirical risk lower bound
of Ω(min{

√
d/n, 1}) (ignoring other parameters). For

this generalized linear problem our upper bound of ≈√
w(C)/n (ignoring other parameters) from Theorem 3.11

(Part 1) equals d1/4/
√
n as w(Sd−1) = Ω(

√
d), which is

8The (ε, δ)-differentially private excess risk bounds of (Talwar
et al., 2015a;b) for the Lasso estimator hold under a weaker L∞-
normalization of xi’s.
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Mechanism 2 STDERM
Input: A dataset D = (x1, y1), . . . , (xn, yn) of n datapoints from the domain Z = {(x, y) : x ∈ Rd, ‖x‖≤ 1, y ∈
R, |y|≤ 1}
Output: θpriv a differentially private estimate of θ̂ ∈ argminθ∈C

1
n

∑n
i=1 `(〈xi, θ〉; yi)

1. Generate Φ̃ ∈ Rm×d ← matrix whose m rows are i.i.d., mean-zero, isotropic, subgaussian random vectors in Rd with
ψ2-norm equaling O(1)

2. Φ← Φ̃√
m

3. θpriv ← Output of Mechanism PROJERM invoked on the input (Φx1, y1), . . . , (Φxn, yn)

4. Return: θpriv

always greater than the lower bound of Ω(min{
√
d/n, 1}),

thereby is consistent with the lower bound. A similar situ-
ation also holds for the case of ε-differential privacy.

Comparison with the Upper Bounds on Private ERM
Risk of (Talwar et al., 2015a;b). Talwar et al. presented
two (ε, δ)-differentially private algorithms, one based on
mirror descent (Talwar et al., 2015a) and the other one
based on Frank-Wolfe optimization technique. In both
these cases, the upper bound on the excess empirical risk
depends on the Gaussian width of C. We list the compari-
son of these results with ours below.

(1) Compressed setting: To our best knowledge, these bounds
are the first for private compressed learning, which as
discussed in the Introduction (Section 1) is a desired
framework for designing efficient algorithms for high-
dimensional problems. All previous private ERM algo-
rithms, including that of Talwar et al. operate on the orig-
inal d-dimensional input space.

(2) Traditional setting (under ε-differential privacy): The
bounds of Talwar et al. hold only under the weaker notion
of (ε, δ)-differential privacy (Thakurta, 2016), whereas in
this paper we establish bounds under both ε- and (ε, δ)-
differential privacy.

(3) Traditional setting (under (ε, δ)-differential privacy):
Firstly note that the bound of Talwar et al. holds for
all Lipschitz convex functions not just generalized lin-
ear functions (the focus of this paper). Now translating
the results of Talwar et al. to our setting, their mirror de-
scent based algorithm has an expected excess empirical
risk bound of O(λ`w(C)

√
maxθ∈C Ψ(θ) log(n/δ)/εn),

where Ψ : C → R needs to be picked to be 1-strongly
convex with respect to ‖·‖C norm. Talwar et al. also pro-
vide few example instantiations of this algorithm by care-
fully picking Ψ based on C. The Frank-Wolfe based algo-
rithm of Talwar et al. has an expected excess empirical
risk bound of O(Γ

1/3
` (λ`w(C))2/3 log2(n/δ)/(εn)2/3),

where Γ` is the curvature constant of ` over the domain C.
In general, because of the dependence on slightly differ-
ent parameters, it is hard to precisely compare the various
excess risk bounds. Therefore, as an example, consider
the problem of linear regression: minθ∈C

1
n

∑n
i=1(yi −

〈xi, θ〉)2. In this case, the expected excess risk bound

(using the Frank-Wolfe approach) from Talwar et al.
is Õ(‖C‖4/32 w(C)2/3/(εn)2/3), whereas the bound from
Theorem 3.11 (Part 1) is Õ(‖C‖22

√
w(C)/

√
εn) (for sim-

plification: setting δ ≈ 1/poly(n)). For bounded ‖C‖2, ε,
and in the regime of w(C) = o(n), when both our result
and that of Talwar et al. are better than the trivial private
risk bound of O(1), the bound of Talwar et al. is better
than our bound by a factor of ≈ n1/6/w(C)1/6. So even
under (ε, δ)-differential privacy, our bounds are close to
that achieved by Talwar et al.. This along with previous
points underscore the importance of our results.
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