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Abstract

In this paper, we study the conditional stochastic optimization (CSO) problem
which covers a variety of applications including portfolio selection, reinforcement
learning, robust learning, causal inference, etc. The sample-averaged gradient
of the CSO objective is biased due to its nested structure, and therefore requires
a high sample complexity for convergence. We introduce a general stochastic
extrapolation technique that effectively reduces the bias. We show that for non-
convex smooth objectives, combining this extrapolation with variance reduction
techniques can achieve a significantly better sample complexity than the existing
bounds. Additionally, we develop new algorithms for the finite-sum variant of
the CSO problem that also significantly improve upon existing results. Finally,
we believe that our debiasing technique has the potential to be a useful tool for
addressing similar challenges in other stochastic optimization problems.

1 Introduction

In this paper, we investigate the conditional stochastic optimization (CSO) problem as presented by
Hu et al. [16], which is formulated as follows:

min
x∈Rd

F (x) = Eξ[fξ(Eη|ξ[gη(x; ξ)])], (CSO)

where ξ and η represent two random variables, with η conditioned on ξ. The fξ : Rp → R and
gη : Rd → Rp denote a stochastic function and a mapping respectively. The inner expectation
is calculated with respect to the conditional distribution of η|ξ. In line with the established CSO
framework [16, 15], throughout this paper, we assume access to samples from the distribution P(ξ)
and the conditional distribution P(η|ξ).
Many machine learning tasks can be formulated as a CSO problem, such as policy evaluation
and control in reinforcement learning [6, 24], and linearly-solvable Markov decision process [5].
Other examples of the CSO problem include instrumental variable regression [23] and invariant
learning [16]. Moreover, the widely-used Model-Agnostic Meta-Learning (MAML) framework,
which seeks to determine a meta-initialization parameter using metadata for related learning tasks that
are trained through gradient-based algorithms, is another example of a CSO problem. In this context,
tasks ξ are drawn randomly, followed by the drawing of samples η|ξ from the specified task [11]. It is
noteworthy that the standard stochastic optimization problem minx Eξ[fξ(x)] represents a degenerate
case of the CSO problem, achieved by setting gη as an identity function.

In numerous prevalent CSO problems, such as first-order MAML (FO-MAML) [11], the outer random
variable ξ only takes value in a finite set (say in {1, . . . , n}). These problems can be reformulated to
have a finite-sum structure in the outer loop and referred to as Finite-sum Coupled Compositional
Optimization (FCCO) problem in [33, 19]. In this paper, we also study this problem, formulated as:

min
x∈Rd

Fn(x) =
1
n

∑n
i=1 fi(Eη|i[gη(x; i)]). (FCCO)

The FCCO problem also has broad applications in machine learning for optimizing average precision,
listwise ranking losses, neighborhood component analysis, deep survival analysis, deep latent variable
models [33, 19].
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Although the CSO and FCCO problems are widespread, they present challenges for optimization
algorithms. Based on the special composition structure of CSO, using chain rule, under mild
conditions, the full gradient of CSO is given by

∇F (x) = Eξ

[ (
Eη|ξ[∇gη(x; ξ)]

)⊤∇fξ(Eη|ξ[gη(x; ξ)])
]
.

Constructing an unbiased stochastic estimator for the gradient is generally computationally expensive
(and even impossible). A straightforward estimation of∇F (x) is to estimate Eξ with 1 sample of ξ,
estimate Eη|ξ[gη(·)] with a set Hξ of m independent and identically distributed (i.i.d.) samples drawn
from the conditional distribution P(η|ξ), and Eη|ξ[∇gη(·)] with a different set H̃ξ of m i.i.d. samples
drawn from the same conditional distribution, i.e.,

∇F̂m(x) :=
(

1
m

∑
η̃∈H̃ξ

∇gη̃(x; ξ)
)⊤∇fξ( 1

m

∑
η∈Hξ

gη(x; ξ)). (1)

Note that ∇F̂m(x) consists of two terms. The first term, (1/m)
∑

η̃∈H̃ξ
∇gη̃(x; ξ), is an unbiased

estimate of Eη|ξ[∇gη(x; ξ)]. However, the second term is generally biased, i.e.,

Eη|ξ[∇fξ( 1
m

∑
η∈Hξ

gη(x; ξ))] ̸= ∇fξ(Eη|ξ[gη(x; ξ)]).

Consequently, ∇F̂m(x) is a biased estimator of ∇F (x). To reach the ε-stationary point of F (x)
(Definition 1), the bias has to be sufficiently small.

Optimization with biased gradients converges only to a neighborhood of the stationary point. While
the bias diminishes with increasing batch size, it also introduces additional sample complexity. For
nonconvex objectives, Biased Stochastic Gradient Descent (BSGD) requires a total sample complexity
of O(ε−6) to reach an ε-stationary point [16]. This contrasts with standard stochastic optimization,
where sample-averaged gradients are unbiased with a sample complexity of O(ε−4) [12, 3]. This
discrepancy has spurred a multitude of proposals aimed at reducing the sample complexities of both
CSO and FCCO problems. Hu et al. [16] introduced Biased SpiderBoost (BSpiderBoost), which,
based on the variance reduction technique SpiderBoost from Wang et al. [38], reduces the variance of
ξ to achieve a sample complexity ofO(ε−5) for the CSO problem. Hu et al. [17] proposed multi-level
Monte Carlo (MLMC) gradient methods V-MLMC and RT-MLMC to further enhance the sample
complexity to O(ε−4). The SOX [33] and MSVR-V2 [19] algorithms concentrated on the FCCO
problem and improved the sample complexity to O(nε−4) and O(nε−3), respectively.

Our Contributions. In this paper, we improve the sample complexities for both the CSO and FCCO
problems (see Table 1). To facilitate a clear and concise presentation, we will suppress the dependence
on specific problem parameters throughout the ensuing discussion.

(a) Our main technical tool in this paper is an extrapolation-based scheme that mitigates. bias in
gradient estimations. Considering a suitably differentiable function q(·) and a random variable
δ ∼ D, we show that we can approximate the value of q(E[δ]) via extrapolation from a limited
number of evaluations of q(δ), while maintaining a minimal bias. In the context of CSO and FCCO
problems, this scheme is used in gradient estimation, where the function q corresponds to ∇fξ
and the random variable δ corresponds to gη .

(b) For the CSO problem, we present novel algorithms that integrate the above extrapolation-based
scheme with BSGD and BSpiderBoost algorithms of Hu et al. [16]. Our algorithms, referred
to as E-BSGD and E-BSpiderBoost, achieve a sample complexity of O(ε−4.5) and O(ε−3.5)
respectively, in order to attain an ε-stationary point for nonconvex smooth objectives. Notably, the
sample complexity of E-BSpiderBoost improves the best-known sample complexity of O(nε−4)
for the CSO problem from Hu et al. [17].

(c) For the FCCO problem2 we propose a new algorithm that again combines the extrapolation-
based scheme with a multi-level variance reduction applied to both inner and outer parts of the
problem. Our algorithm, referred to as E-NestedVR, achieves a sample complexity of O(nε−3)
if n ≤ ε−2/3 and O(max{

√
nε−2.5, ε−4/

√
n}) if n > ε−2/3 for nonconvex smooth objectives

and second-order extrapolation scheme. Our bound is never worse than the O(nε−3) bound of
MSVR-V2 algorithm of Jiang et al. [19] and is in fact better if n = Ω(ε−2/3). As an illustration,
when n = Θ(ε−1.5), our bound of O(ε−3.25) is significantly better than the MSVR-V2 bound of
O(ε−4.5).

2 For the FCCO problem we focus on n = O(ε−2) case, for n = Ω(ε−2) we can just treat the FCCO
problem as a CSO problem and get an O(ε−3.5) sample complexity bound via our E-BSpiderBoost algorithm.
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Problem Old Bounds Our Bounds

Algorithm Bound Algorithm Bound

CSO BSGD [16] O(ε−6) E-BSGD O(ε−4.5)
CSO BSpiderBoost [16] O(ε−5) E-BSpiderBoost O(ε−3.5)
CSO RT-MLMC [17] O(ε−4)

FCCO MSVR-V2 [19] O(nε−3) E-NestedVR

{
O(nε−3) if n ≤ ε−2/3

O(max{
√
n

ε2.5 ,
1√
nε4
}), if n > ε−2/3

Table 1: Sample complexities needed to reach ε-stationary point for FCCO and CSO problems with nonconvex
smooth objectives. Assumptions are comparable, but our results require an additional mild regularity on fξ
and gη. For FCCO also see Footnote 2. Note that Ω(ε−3) is a sample complexity lower bound for standard
stochastic nonconvex optimization [3], and hence, also for the problems considered in this paper.

In terms of proof techniques, our approach diverges from conventional analyses for the CSO
and FCCO problems in that we focus on explicitly bounding the bias and variance terms of the
gradient estimator to establish the convergence guarantee. Compared to previous results, our im-
provements do require an additional mild regularity assumption on fξ and gη mainly that ∇fξ is 4th
order differentiable. Firstly, as we discuss in Remark 2 most common instantiations of CSO/FCCO
framework such as: 1) invariant logistic regression [16], 2) instrumental variable regression [23],
3) first-order MAML for sine-wave few shot regression [11] and other problems, 4) deep average
precision maximization [26, 34], tend to satisfy this assumption. Secondly, we highlight that the
bounds derived from previous studies do not improve when incorporating this additional regularity
assumption. Thirdly, Ω(ε−3) remains the lower bound for stochastic optimization even under the
arbitrary smoothness constraint [2], demonstrating that our improvement is non-trivial. Our results
show that, this regularity assumption, which seems to practically valid, can be exploited through a
novel extrapolation-based bias reduction technique to provide substantial improvements in sample
complexity.3

We defer some additional related work to Appendix B and conclude with some preliminaries.

Notation. Vectors are denoted by boldface letters. For a vector x, ∥x∥2 denotes its ℓ2-norm. A
function with k continuous derivatives is called a Ck function. We use a ≲ b to denote that a ≤ Cb for
some constant C > 0. We consider expectation over various randomness: Eξ[·] denotes expectation
over the random variable ξ, Eη|ξ[·] denotes expectation over the conditional distribution of η|ξ. Unless
otherwise specified, for a random variable X , E[X] denotes expectation over the randomness in X .
We focus on nonconvex objectives in this paper and use the following standard convergence criterion
for nonconvex optimization [18].

Definition 1 (ε-stationary point) For a differentiable function F (·), we say that x is a first-order
ε-stationary point if ∥∇F (x)∥2 ≤ ε2.

For notational convenience, in the rest of this paper, we omit the dependence on ξ (or i in the FCCO
context) in the function g and use gη(x) to represent gη(x; ξ).

2 Stochastic Extrapolation as a Tool for Bias Correction

In this section, we present an approach for tackling the bias problem as appears in optimization
procedures such as BSGD, BSpiderBoost, etc. Importantly, our approach addresses a general problem
appearing in optimization settings and could be of independent interest. All missing details from this
section are presented in Appendix C.

For ease of presentation, we start by considering the 1-dimensional case and assume a function
q : R → R, a constant s ∈ R. Let δ be a random variable drawn from an arbitrary distribution D
over R. In Sections 3 and 4, we apply these ideas to the CSO and FCCO problems where the random
variable δ is played by gη(·) and function q is played by ∇fξ. Informally stated, our goal in this
section will be to

Efficiently approximate q(s+ E[δ]) with few evaluations of {q(s+ δ)}δ∼D.

3Higher-order smoothness conditions have also been exploited in standard stochastic optimization for
performance gains [4].
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An interesting case is when s = 0, where we are approximating q(E[δ]) with evaluations of
{q(δ)}δ∼D. Now, if q is an affine function, then q(s+ E[δ]) = E[q(s+ δ)]. However, the equality
does not hold true for general q, and there exists a bias, i.e., |q(s+ E[δ])− E[q(s+ δ)]| > 0. In this
section, we introduce a stochastic extrapolation-based method, where we use an affine combination
of biased stochastic estimates, to achieve better approximation.

Suppose q ∈ C2k is a continuous differentiable up to 2k-th derivative and let h = E[δ]. We expand
q(s+ δ), the most straightforward approximation of q(s+ E[δ]), using Taylor series at s+ h, and
take expectation,

E[q(s+ δ)] =q(s+ h) + q′(s+ h)E[δ − h] + q′′(s+h)
2 E[(δ − h)2] + q(3)(s+h)

6 E[(δ − h)3]

+ . . .+ q(2k−1)(s+h)
(2k−1)! E[(δ − h)(2k−1)] + 1

(2k)! E[q(2k)(ϕδ)(δ − h)2k],
(2)

where ϕδ between s+ δ and s+ h. While E[q(s+ δ)] matches q(s+ h) in the first 2 terms, the third
term is no longer zero. The approximation error (bias) is

|E[q(s+ δ)]− q(s+ h)| = | q
′′(s+h)

2 E[(δ − h)2] + . . .+ 1
(2k)! E[q(2k)(ϕδ)(δ − h)2k]|.

In order to analyze the upper bound, we make the following assumption on D and q.

Assumption 1 (Bounded moments) For all δ ∼ D has bounded higher-order moments: σl :=
|E[(δ − E[δ])l]| <∞ for l = 2, 3, . . . 2k.

Assumption 2 (Bounded derivatives) The q ∈ C2k and has bounded derivatives, i.e., al :=
sups∈dom(q) |q(l)(s)| <∞ for l = 1, 2, . . . , 2k.

In addition, we consider a sample averaged distribution Dm derived from D as follows.

Definition 2 Given a distribution D satisfying Assumption 1 and m ∈ N+, we define the distribution
Dm that outputs δ where δ = 1

m

∑m
i=1 δi with δi

i.i.d.∼ D.

The moments of such distribution Dm decrease with batch size m as k ≥ 2, |E[(δ − E[δ])k]| =
O(m−⌈k/2⌉) (see Lemma 1). Our desiderata would be to construct a scheme that uses some samples
from the distribution Dm to construct an approximation of q(s+ E[δ]) that satisfies the following
requirement.

Definition 3 (kth-order Extrapolation Operator) Given a function q : R→ R satisfying Assump-
tion 2 and distribution Dm satisfying Assumption 1, we define a kth-order extrapolation operator
T (k)
Dm

as an operator from C2k → C2k that given N = N(k) i.i.d. samples δ1, . . . , δN from Dm

satisfies ∀s ∈ R: |E[T (k)
m q(s)]− q(s+ E[δ])| = O(m−k).

We now propose a sequence of operators L(1)
Dm

,L(2)
Dm

,L(3)
Dm

, . . . that satisfy the above definition. The

L(k)
Dm

q(s) is designed to ensure its Taylor expansion at s+h has a form of q(s+h)+O(E[(δ−h)2k]).
The remainder O(E[(δ − h)2k]) is bounded by O(m−k) due to Lemma 1.

A First-order Extrapolation Operator. We define the simplest operator

L(1)
Dm

q : s 7→ [q(s+ δ)] where δ
i.i.d.∼ Dm.

In Proposition 2 (Appendix C), we show that L(1)
Dm

is a first-order extrapolation operator.4

A Second-order Extrapolation Operator. We define the following linear operator L(2)
Dm

which

transforms q ∈ C4 into L(2)
Dm

q which has lesser bias (but similar variance, as shown later).

Definition 4 (L(2)
Dm

Operator) Given Dm and q, define the following operator,

L(2)
Dm

q : s 7→
[
2 · q(s+ δ1+δ2

2 )− q(s+δ1)+q(s+δ2)
2

]
where δ1, δ2

i.i.d.∼ Dm.

4Note that if the function q is only Lq-Lipschitz continuous, then |E [q(s+ δ)]− q(s+ E[δ])| ≤√
L2

q E[|δ − E[δ]|]2 ≤ Lq
√
σ2

m1/2 . Therefore, in this case, q(s+ δ) does not satisfy the first-order guarantee.
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Figure 1: The Fig. 1a investigates the estimation errors of L(·)q(s) with their number of observations.
The Fig. 1b compares the biases of E[L(·)q(s)] with increasing inner batch size m.

Note that δ1+δ2
2 is same as sampling from D2m. The absolute difference in the Taylor expansion of

L(2)
Dm

q at s+ h differs from q(s+ h) as,

O
(∣∣E [2( δ1+δ2

2 − h)3 − 1
2 ((δ1 − h)3 + (δ2 − h)3)

]∣∣) = O(|(E[(δ − h)3]|) for δ i.i.d.∼ Dm. (3)

The bias error of this scheme can be bounded through the following proposition.

Proposition 1 (Second-order Guarantee) Assume that distribution Dm and q(·) satisfies Assump-

tion 1 and 2 respectively with k = 2. Then, for all s ∈ R,
∣∣∣E [L(2)

Dm
q(s)

]
− q(s+ E[δ])

∣∣∣ ≤
4a3σ3+9a4σ

2
2

48m2 + 5a4

96
σ4−3σ2

2

m3 .

Remark 1 While extrapolation is motivated by Taylor expansion which requires smoothness, higher
order derivatives are not explicitly computed. Appendix F.3 empirically shows that applying extrapo-
lation to non-smooth functions achieves similar bias correction. Relaxing the smoothness conditions
is a direction for future work.

The above proposition shows that L(2)
Dm

is in fact a second-order extrapolation operator with k = 2
under Definition 3. We will use this operator when we consider the CSO and FCCO problems later.
Now, focusing on variance, we can relate the variance of L(2)

Dm
q(s) in terms of the variance of q(s+δ).

In particular, a consequence of Lemma 2 is that

E
[(
L(2)
Dm

q(s)− E[L(2)
Dm

q(s)]
)2]

= O(E[(q(s+ δ)− E[q(s+ δ)])2]).

Extension of L(2)
Dm

to Higher-dimensional Case. If q : Rp → Rℓ is a vector-valued function,
then there is a straightforward extension of Definition 4. Now, for distribution D over Rp and
corresponding sampled averaged distribution Dm, and s ∈ Rp

L(2)
Dm

q : s 7→
[
2 · q(s+ δ1+δ2

2 )− q(s+δ1)+q(s+δ2)
2

]
where δ1, δ2

i.i.d.∼ Dm. (4)

Higher-order Extrapolation Operators. The idea behind the construction of L(2)
Dm

can be general-
ized to higher k’s. For example, in Proposition 3, we construct a third-order extrapolation operator
L(3)
Dm

through higher degree Taylor series approximation

L(3)
Dm

q : s 7→ (− 1
36L

(2)
Dm

+ 5
9L

(2)
D2m
− 3

4L
(2)
D3m
− 16

9 L
(2)
D4m

+ 3L(2)
D6m

)q(s).

While this idea of expressing the k-th order operator as an affine combination of lower-order operators
works for every k, explicit constructions soon become tedious.

In Fig. 1, we empirically demonstrate the effectiveness of extrapolation in stochastic estimation. 5 In
Fig. 1a, we choose q(s) = s2/2, δ ∼ N (10, 100). For both L(2)

D6m
q(s) and L(3)

Dm
q(s), their estimation

errors converge to 0 with increasing number of estimates. This coincides with Proposition 1 as a3 = 0

5We use L(1)
D12m

, L(2)
D6m

, L(3)
Dm

to ensure that each estimate uses same amount of samples (12m).
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and a4 = 0 for quadratic q. In contrast, biased first order method only converges to a neighborhood.
In Fig. 1b, we consider q(s) = s4 and p(δ) = δ/2 where δ ∈ [0, 2]. All three methods are biased and
their biases decrease with m, i.e. O(m−k) for kth order method. Depending on the constants (e.g. ai,
σi), a higher-order extrapolation method may need decently large m (burn-in phase) to outperform
lower-order methods.

3 Applying Stochastic Extrapolation in the CSO Problem

In this section, we apply the extrapolation-based scheme from the previous section to reduce the bias
in the CSO problem. We focus on variants of BSGD and their accelerated version BSpiderBoost
based on our second-order approximation operator (Definition 4). Let Hξ, H̃ξ, and H ′

ξ indicate
different sets, each of which contains m i.i.d. random variables/samples drawn from the conditional
distribution P(η|ξ). Remember that, as mentioned earlier, we use gη(x) to represent gη(x; ξ).

Extrapolated BSGD. At time t, BSGD constructs a biased estimator of∇F (xt) using one sample ξ
and 2m i.i.d. samples from the conditional distribution as in (1)

Gt+1
BSGD =

(
1
m

∑
η̃∈H̃ξ

∇gη̃(xt)
)⊤∇fξ( 1

m

∑
η∈Hξ

gη(x
t)
)
. (5)

To reduce this bias, we apply the second-order extrapolation operator from (4). At time t, we define
Dt+1

g,ξ to be the distribution of the random variable 1
m

∑
η∈Hξ

gη(x
t). Then we apply L(2)

Dt+1
g,ξ

by

setting q to ∇fξ and s = 0, i.e.

L(2)

Dt+1
g,ξ

∇fξ(0) := 2∇fξ
(

1
2m

∑
η∈Hξ

gη(x
t) + 1

2m

∑
η′∈H′

ξ
gη′(xt))

)
− 1

2

(
∇fξ( 1

m

∑
η∈Hξ

gη(x
t)) +∇fξ( 1

m

∑
η′∈H′

ξ
gη′(xt))

)
, (6)

where 1
m

∑
η∈Hξ

gη(x
t) and 1

m

∑
η′∈H′

ξ
gη′(xt) are i.i.d. drawn from Dt+1

g,ξ . In Algorithm 2
(Appendix A), we present our extrapolated BSGD (E-BSGD) scheme, where we replace
∇fξ( 1

m

∑
η∈Hξ

gη(x
t)) in (5) by L(2)

Dt+1
g,ξ

∇fξ(0) resulting in this following gradient estimate:

Gt+1
E-BSGD =

(
1
m

∑
η̃∈H̃ξ

∇gη̃(xt)
)⊤
L(2)

Dt+1
g,ξ

∇fξ(0). (7)

Extrapolated BSpiderBoost. BSpiderBoost, proposed by Hu et al. [16], uses the variance reduction
methods for nonconvex smooth stochastic optimization developed by Fang et al. [10], Wang et al.
[38]. BSpiderBoost builds upon BSGD and has two kinds of updates: a large batch and a small batch
update. In each step, it decides which update to apply based on a random coin. With probability pout,
it selects a large batch update with B1 outer samples of ξ. With remaining probability 1 − pout, it
selects a small batch update where the gradient estimator will be updated with gradient information in
the current iteration generated with B2 outer samples of ξ and the information from the last iteration.
Formally, it constructs a gradient estimate as follows,

Gt+1
BSB =

{
Gt

BSB + 1
B2

∑
ξ∈B2,|B2|=B2

(Gt+1
BSGD −Gt

BSGD) with prob. 1− pout
1
B1

∑
ξ∈B1,|B1|=B1

Gt+1
BSGD with prob. pout.

(8)

We propose our extrapolated BSpiderBoost scheme (formally defined in Algorithm 3, Appendix A)
by replacing the BSGD gradient estimates in (8) with E-BSGD.

Gt+1
E-BSB =

{
Gt

E-BSB + 1
B2

∑
ξ∈B2,|B2|=B2

(Gt+1
E-BSGD −Gt

E-BSGD) with prob. 1− pout
1
B1

∑
ξ∈B1,|B1|=B1

Gt+1
E-BSGD with prob. pout.

(9)

Sample Complexity Analyses of E-BSGD and E-BSpiderBoost. We adopt the standard assump-
tions used in the literature [27, 35, 33, 41]. All proofs are deferred to Appendix D.

Assumption 3 (Lower bound) F is lower bounded by F ⋆.

6



Assumption 4 (Bounded variance) Assume that gη and ∇gη have bounded variances, i.e., for
all ξ in the support of P(ξ) and x ∈ Rp, σ2

g := Eη|ξ[
∥∥gη(x; ξ)− Eη|ξ[gη(x; ξ)]

∥∥2
2
] < ∞ and

ζ2g := Eη|ξ[
∥∥∇gη(x; ξ)− Eη|ξ[∇gη(x; ξ)]

∥∥2
2
] <∞.

Assumption 5 (Lipschitz continuity/smoothness of fξ and gη) For all ξ in the support of P(ξ) ,
fξ(·) is Cf -Lipschitz continuous (i.e., ∥fξ(x)− fξ(x

′)∥2 ≤ Cf ∥x− x′∥2 ∀x,x′ ∈ Rp) and Lf -
Lipschitz smooth (i.e., ∥∇fξ(x)−∇fξ(x′)∥2 ≤ Lf ∥x− x′∥2, ∀x,x′ ∈ Rp) for any ξ. Similarly,
for all ξ in the support of P(ξ) and η in the support of P(η|ξ), gη(·; ξ) is Cg-Lipschitz continuous
and Lg-Lipschitz smooth.

The smoothness of fξ and gη naturally implies the smoothness of F . Zhang and Xiao [41, Lemma
4.2] show that Assumption 5 ensures F is: 1) CF -Lipschitz continuous with CF = CfCg; and
2) LF -Lipschitz smooth with LF = LgCf + C2

gLf . We denote L̃F = ζgCf + σgCgLf . More-
over, Assumption 5 also guarantees that fξ and gη have bounded gradients. In addition, fξ and gη
are assumed to satisfy the following regularity condition in order to apply our extrapolation-based
scheme from Section 2.

Assumption 6 (Regularity) For all ξ in the support of P(ξ), ∇fξ is 4th-order differentiable with
bounded derivatives (i.e., al := supg∈Rp

∥∥∇(l)fξ(g)
∥∥
2
<∞ for l = 1, 2, 3, 4, ∀x ∈ Rp) and gη has

bounded moments upto 4th-order (i.e., σk = supx∈Rd supξ Eη|ξ

[∑p
i=1

[
gη(x)− Eη|ξ[gη(x)]

]k
i

]
<

∞, k = 1, 2, 3, 4).

Remark 2 The core piece of Assumption 6 is the 4th order differentiability of∇fξ as other parts can
be easily satisfied through appropriate boundedness assumptions. This condition though is satisfied
by common instantiations of CSO/FCCO. We discuss some examples including invariant logistic
regression, instrumental variable regression, first-order MAML for sine-wave few-shot regression
task, deep average precision maximization in Section 5. Therefore, our improvements in sample
complexity apply to all these problems.

Consider some time t > 0. Let Gt+1 be a stochastic estimate of ∇F (xt) where xt is the current
iterate. The next iterate xt+1 := xt − γGt. Let E[·] denote the conditional expectation, where we
condition on all the randomness until time t. We consider the bias and variance terms coming from
our gradient estimate. Formally, we define the following two quantities

Et+1
bias =

∥∥∇F (xt)− E[Gt+1]
∥∥2
2
, Et+1

var = E[
∥∥Gt+1 − E[Gt+1]

∥∥2
2
].

Our idea of getting to an ε-stationary point (Definition 1) will be to ensure that Et+1
bias and Et+1

var are
bounded. The main technical component of our analyses is in fact analyzing these bias and variance
terms for the various gradient estimates considered. For this purpose, we first analyze the bias and
variance terms for the (original) BSGD (Lemma 5) and BSpiderBoost (Lemma 7) algorithms, which
are then used to get the corresponding bounds for our E-BSGD (Lemma 6) and E-BSpiderBoost
(Lemma 8) algorithms. Through these bias and variance bounds, we establish the following main
results of this section.

Theorem 3 [E-BSGD Convergence] Consider the (CSO) problem. Suppose Assumptions 3, 4, 5, 6
hold true and LF , CF , L̃F , Cg, F

⋆ are constants and Ce(f ; g) :=
8a3σ3+18a4σ

2
2+5a4σ4

96 defined in
Corollary 1 are associated with second order extrapolation in the CSO problem. Let step size
γ ≤ 1/(2LF ). Then the output xs of E-BSGD (Algorithm 2) satisfies: E[∥∇F (xs)∥22] ≤ ε2, for
nonconvex F , if the inner batch size m = Ω(CeCgε

−1/2) , and the number of iterations

T = Ω(LF (F (x0)− F ⋆)(L̃
2
F/m + C2

F )ε
−4).

The E-BSGD takes O(ε−4) iterations to converge and compute O(ε−0.5) gradients per iteration.
Therefore, its resulting sample complexity isO(ε−4.5) which is more efficient thanO(ε−6) of BSGD.
Similar improvements can be observed for E-BSpiderBoost in Theorem 4.

Theorem 4 [E-BSpiderBoost Convergence] Consider the (CSO) problem under the same assump-
tions as Theorem 3. Let step size γ ≤ 1/(13LF ). Then the output xs of E-BSpiderBoost (Algorithm 3)
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satisfies: E[∥∇F (xs)∥22] ≤ ε2, for nonconvex F , if the inner batch size m = O(CeCgε
−0.5),

the hyperparameters of the outer loop of E-BSpiderBoost B1 = (L̃2
F /m + C2

F )ε
−2, B2 =√

B1, pout = 1/B2, and the number of iterations
T = Ω(LF (F (x0)− F ⋆)ε−2).

The resulting sample complexity of E-BSpiderBoost is O(ε−3.5), which improves O(ε−5) bound of
BSpiderBoost [16] and O(ε−4) bound of V-MLMC/RT-MLMC [17].

4 Applying Stochastic Extrapolation in the FCCO Problem
In this section, we apply the extrapolation-based scheme from Section 2 to the FCCO problem. We
focus on case where n = O(ε−2). For larger n, we can treat the FCCO problem as a CSO problem
and get an O(ε−3.5) bound from Theorem 4. All missing details are presented in Appendix E.

Now, a straightforward algorithm for FCCO is to use the finite-sum variant of SpiderBoost (or
SPIDER) [10, 38] in Algorithm 3. In this case, if we choose the outer batch sizes to be B1 = n,
B2 =

√
n and the inner batch size to be m = max{ε−2/n, ε−1/2}. The resulting sample complexity

of E-BSpiderBoost now becomes, O(max{
√
n/ε2.5, 1/

√
nε4}), which recovers O(ε−3.5) bound as

in Theorem 4 for n = Θ(ε−2). However, when n is small, such as n = O(1), the sample complexity
degenerates to O(ε−4) which is worse than the Ω(ε−3) lower bound of stochastic optimization [3].
We leave the details to Theorem 8. We still use Assumptions 3, 4, 5, 6 for the analysis of FCCO
problem, replacing the role of ξ with i.
Algorithm 1 E-NestedVR

1: Input: x0 ∈ Rd, step-size γ, batch sizes S1, S2, B1, B2, Probability pin, pout
2: for t = 0, 1, . . . , T − 1 do
3: if (t = 0) or (with prob. pout) then ▷ Large outer batch
4: for i ∈ B1 ∼ [n] with |B1| = B1 do
5: draw yt+1

i from distribution Dt+1
y,i defined in (10)

6: compute zt+1
i using (11) and define ϕt

i = xt

7: end for
8: Gt+1

E-NVR = 1
B1

∑
i∈B1

(zt+1
i )⊤L(2)

Dt+1
y,i

∇fi(0)
9: else ▷ Small outer batch

10: for i ∈ B2 with |B2| = B2 do
11: draw yt+1

i and yt
i from distribution Dt+1

y,i and Dt
y,i defined in (10)

12: compute zt+1
i using (11) and define ϕt

i = xt

13: end for
14: Gt+1

E-NVR = Gt
E-NVR + 1

B2

∑
i∈B2

(zt+1
i )⊤(L(2)

Dt+1
y,i

∇fi(0)− L(2)

Dt
y,i
∇fi(0))

15: end if
16: xt+1 = xt − γGt+1

E-NVR
17: end for
18: Output: xs picked uniformly at random from {xt}T−1

t=0

Extrapolated NestedVR. We now introduce a nested variance reduction algorithm E-NestedVR
which reaches low sample complexity for all choices of n. Missing proofs from this section are
presented in Appendix E. For the stochasticities in the FCCO problem, our idea is to use two nested
SpiderBoost variance reduction components: one for the outer random variable i and the other for the
inner random variable η|i. In each outer (resp. inner) SpiderBoost step, we choose large batch B1

(resp. S1) with probability pout (resp. pin); otherwise we choose small batch. Let Hi denote a set of
m i.i.d. samples drawn from the conditional distribution P(η|i). Similarly, let H̃i denote another set
of m i.i.d. samples drawn from the same conditional distribution. For each given i, we approximate
Eη|i[gη(x

t)] with yt+1
i from distribution Dt+1

y,i where,

yt+1
i =

{ 1
S1

∑
η∈Hi

gη(x
t) with prob. pin or t = 0

yt
i +

1
S2

∑
η∈Hi

(gη(x
t)− gη(ϕ

t
i)) with prob. 1− pin.

(10)

Similarly, we approximate Eη̃|i[∇gη̃(xt)] with zt+1
i defined as follows

zt+1
i =

{ 1
S1

∑
η̃∈H̃i

∇gη̃(xt) with prob. pin or t = 0

zt
i +

1
S2

∑
η̃∈H̃i

(∇gη̃(xt)−∇gη̃(ϕt
i)) with prob. 1− pin,

(11)
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Figure 2: Performances of algorithms and their extrapolated versions on the invariant logistic
regression task. Algorithms in each subplot use the same amount of inner batch size in each iteration.
The shaded region represents the 95%-confidence interval computed over 10 runs.

where ϕt
i is the last time i is visited before time t. If i is not selected at time t, then yt+1

i = yt
i and

zt+1
i = zt

i . Note that we use independent samples for yt+1
i and zt+1

i .

Finally, we present E-NestedVR in Algorithm 1 where second-order extrapolation operator L(2)
· is

applied to each occurrence of ∇fi. We now analyze its convergence guarantee. Our analysis works
by first looking at the effect of multi-level variance reduction without the extrapolation (that we refer
to as NestedVR, Theorem 10, Appendix E.2), and then showing how extrapolation could further help
to drive down the sample complexity.

Theorem 5 [E-NestedVR Convergence] Consider the (FCCO) problem. Under the same assump-
tions as Theorem 3.

• If n = O(ε−2/3), then we choose the hyperaparameters of E-NestedVR (Algorithm 1) as
B1 = B2 = n, pout = 1, S1 = L̃2

F ε
−2, S2 = L̃F ε

−1, pin = L̃−1
F ε, γ = O( 1

LF
).

• If n = Ω(ε−2/3), then we choose the hyperaparameters of E-NestedVR as B1 = n,B2 =
√
n, pout = 1/

√
n, S1 = S2 = max

{
CeCgε

−1/2, L̃2
F /(nε

2)
}
, pin = 1, γ = O( 1

LF
).

Then the output xs of E-NestedVR satisfies: E[∥∇F (xs)∥22] ≤ ε2, for nonconvex F with iterations

T = Ω
(
LF (F (x0)− F ⋆)ε−2

)
.

From Theorem 5, E-NestedVR has a sample complexity of O(nε−3) in the small n regime (n =
O(ε−2/3)) and O(max{

√
n/ε2.5, 1/

√
nε4}) in the large n regime (n = Ω(ε−2/3)). Therefore, in

the large n regime, this improves the O(nε−3) sample complexity of MSVR-V2 [19].

5 Applications
In this section, we demonstrate the numerical performance of our proposed algorithms. We focus on
the application of invariant logistic regression here. In Appendix F, we discuss performance of our
proposed algorithms on other common CSO/FCCO applications.

5.1 Application of Invariant Risk Minimization
Invariant learning has wide applications in machine learning and related areas [22, 1]. Invariant
logistic regression [16] is formulated as follows:

min
x

Eξ=(a,b)[log(1 + exp(−bEη|ξ[η]
⊤x)],

where a and b represent a sample and its corresponding label, and η is a noisy observation of the
sample a. This first part can be considered as a CSO objective, with fξ(y) := log(1+exp(−by)) and
gη(x; ξ) := η⊤x. As the loss fξ ∈ C∞ is smooth, our results from Sections 3 and 4 are applicable.

An ℓ2-regularizer is added to ensure the existence of an unique minimizer. Since the gradient of
the penalization term is unbiased, we only have to consider the bias of the data-dependent term.
We generate a synthetic dataset with d = 10 dimensions. The minimizer is drawn from Gaussian
distribution x⋆ ∼ N (0, 1) ∈ Rd. We draw invariant samples {(ai, bi)}i where ai ∼ N (0, 1) ∈ Rd

and compute bi = sgn(a⊤
i x

⋆) and its perturbed observation η ∼ N (ai, 100) ∈ Rd.

We consider drawing ξ from a large set (n = 50000) and a small set (n = 50) as CSO and
FCCO problems respectively. As baselines, we implemented the BSGD and BSpiderBoost methods
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Figure 3: Performances of algorithms and their extrapolated versions on the instrumental variable
regression task. The shaded region represents the 95%-confidence interval.

from [16], V-MLMC approach from [17], and NestedVR approach from Appendix E.2 which
achieves the same complexity as MSVR-V2 [19] for the FCCO problem. RT-MLMC shares the
same sample complexity as V-MLMC, and is thus omitted from the experiment [17]. The results are
shown in Fig. 2. In the CSO setting, we compare biased gradient methods with their extrapolated
variants (BSGD vs. E-BSGD, BSpiderBoost vs. E-BSpiderBoost, and NestedVR vs. E-NestedVR).
The extrapolated versions of BSGD, BSpiderBoost, and NestedVR consistently reach lower error
than their non-extrapolated counterparts, as is evident in Figure 2a. In this case, the performance
of BSpiderBoost is similar to BSGD as also noted by the authors of these techniques [16], and a
drawback of BSpiderBoost seems to be that it is much harder to tune in practice. However, it is clear
that E-BSGD outperforms BSGD, and E-BSpiderBoost outperforms BSpiderBoost, respectively. In
the FCCO setting, we compare extrapolation based methods and MLMC based methods. Figure 2a,
shows that E-NestedVR outperforms all other extrapolated algorithms, including the V-MLMC
approach of [17], matching our theoretical findings.

5.2 Application of Instrumental Variable Regression
Instrumental variable regression is a popular technique in econometrics that aims to estimate the
causal effect of input X on a confounded outcome Y with an instrument variable Z, which, for a
given X , is conditionally independent of Y . As noted by [23], the instrumental variable regression is
a special case of the CSO problem. The instrumental variable regression problem is phrased as:

min
w

Eξ=(Y,Z)

[
ℓ(Y,EX|Z [gX(w)])

]
where ξ = (Y,Z), η = X . This can be viewed in the CSO framework with fξ(·) = ℓ(Y, ·). We
choose ℓ(y, ŷ) = log cosh(y − ŷ) as regression loss function and gX(w) = w⊤X to be a linear
regressor. In this case, fξ ∈ C∞ with∇fξ(ŷ) = tanh(ŷ − Y ), and our results from Sections 3 and 4
apply. We generate the data similar to [31]

Z ∼ Uniform([−3, 3]2), e ∼ N (0, 1), δ ∼ N (0, 0.1), γ ∼ Exponential(10)

X = 1
2z1 +

1
2e+ γ, Y = X + e+ δ

where z1 is the first dimension of Z, e is the confounding variable and δ, γ are noises. In this
experiment, we solve the instrumental variable regression using BSGD, BSpiderBoost, NestedVR
and their extrapolated variants described in Sections 3 and 4. In each pair of experiments, the samples
used per iteration are fixed same, i.e.: 1) BSGD uses m = 2 and E-BSGD uses m = 1; 2) For
BSpiderBoost and E-BSpiderBoost, we use cycle length of 10, small batch and large batch in Spider
to be 10 and 100 respectively, and we choose inner batch sizes m = 2 for BSpiderBoost and m = 1
for E-BSpiderBoost; 3) For NestedVR and E-NestedVR, we fix the outer batch size to 10 and 5
respectively, and choose fix the inner Spider Cycle to be 10 with large batch 100 and small batch 10.
The results are presented in Figure 3. As is quite evident, the extrapolation variants achieve faster
convergence in all 3 cases, confirming our theoretical findings.

6 Concluding Remarks
In this paper, we consider the conditional stochastic optimization CSO problem and its finite-sum
variant FCCO. Due to the interplay between nested structure and stochasticity, most of the existing
gradient estimates suffer from large biases and have large sample complexity of O(ε−5). We propose
stochastic extrapolation-based algorithms that tackle this bias problem and improve the sample
complexities for both these problems. While we focus on nonconvex objectives, our proposed
algorithms can also be beneficial when used with strongly convex, convex objectives. We also believe
that similar ideas could also prove helpful for multi-level stochastic optimization problems [41] with
nested dependency.
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A Missing Pseudocodes

We present pseudocodes of E-BSGD and E-BSpiderBoost scheme in Algorithms 2 and 3 respectively.

Algorithm 2 E-BSGD

1: Input: x0 ∈ Rd, step-size γ, batch sizes m
2: for t = 0, 1, . . . , T − 1 do
3: Draw one sample ξ and compute extrapolated gradient Gt+1

E-BSGD from (7)
4: xt+1 ← xt − γGt+1

E-BSGD
5: end for
6: Output: xs picked uniformly at random from {xt}T−1

t=0

B Missing Details from Section 1

B.1 Other Related Work

CSO. Dai et al. [5] proposed a primal-dual stochastic approximation algorithm to solve a min-max
reformulation of CSO, employing the kernel embedding techniques. However, this method requires
convexity of fξ and linearity of gη, which are not satisfied by general applications when neural
networks are involved. Goda and Kitade [13] showed that a special class of CSO problems can be

15



Algorithm 3 E-BSpiderBoost

1: Input: x0 ∈ Rd, step-size γ, batch sizes B1, B2, Probability pout
2: for t = 0, 1, . . . , T − 1 do
3: Draw χout from Bernoulli(pout)
4: if (t = 0) or (χout = 1) then ▷ Large batch
5: Draw B1 outer samples {ξ1, . . . , ξB1

}
6: Compute extrapolated gradient Gt+1

E-BSGD with (7)

Gt+1
E-BSB = 1

B1

∑
ξ∈B1

Gt+1
E-BSGD

7: else ▷ Small batch
8: Draw B2 outer samples {ξ1, . . . , ξB2

}
9: Compute extrapolated gradient Gt+1

E-BSGD with (7)

Gt+1
E-BSB = Gt

E-BSB + 1
B2

∑
ξ∈B2

(Gt+1
E-BSGD −Gt

E-BSGD)

10: end if
11: xt+1 = xt − γGt+1

E-BSB
12: end for
13: Output: xs picked uniformly at random from {xt}T−1

t=0

unbiased, e.g., when fξ measures the squared error between some u(ξ) and Eη|ξ[gη(x; ξ], giving rise
to this objective function Eξ[(u(ξ)− Eη|ξ[gη(x; ξ])

2]. However, they did not show any improvement
over the sample complexity of BSGD (i.e., O(ε−6)). Hu et al. [16] also analyzed lower bounds on
the minimax error for the CSO problem and showed that for a specific class of biased gradients with
O(ε) bias (same bias as BSGD) and variance O(1) the bound achieved by BSpiderBoost is tight.
However, these lower bounds are not applicable in settings such as ours (and also to [17]) where the
bias is smaller than the BSGD bias.

Variance Reduction. The reduction of variance in stochastic optimization is a crucial approach
to decrease sample complexity, particularly when dealing with finite-sum formulations of the form
minx

1
n

∑n
i=1 fi(x). Pioneering works such as Stochastic Average Gradient (SAG) [30], Stochastic

Variance Reduced Gradient (SVRG) [21, 28], and SAGA [7, 29] improved the iteration complexity
from O(ε−4) in Stochastic Gradient Descent (SGD) to O(ε−2). Subsequent research, including
Stochastic Path-Integrated Differential Estimator (SPIDER) [10] and Stochastic Recursive Gradient
Algorithm (SARAH) [25], expanded the application of these techniques to both finite-sum and online
scenarios, where n is large or possibly infinite. These methods boast an improved sample complexity
of min(

√
nε−2, ε−3). SpiderBoost [38], achieves the same near-optimal complexity performance as

SPIDER, but allows a much larger step size and hence runs faster in practice than SPIDER. In this
paper, we use a probabilistic variant of SpiderBoost as the variance reduction module for CSO and
FCCO problems. We highlight that alternative techniques, such as SARAH, can also be applied and
offer similar guarantees.

Bias Correction. One of the classic problems in statistics is to design procedures to reduce the
bias of estimators. Well-established general bias correction techniques, such as the jackknife [32],
bootstrap [8], Taylor series [39, 14], have been extensively studied and applied in various contexts [20].
However, these methods are predominantly examined in relation to standard statistical distributions,
with limited emphasis on their adaptability to optimization problems. Our proposed extrapolation-
based approach is derived from sample-splitting methods [14], specifically tailored and analyzed for
optimization problems involving unknown distributions.

Stochastic Composition Optimization. Finally, a closely related class of problems, called stochastic
composition optimization, has been extensively studied (e.g., [40, 9, 36, 37]) in the literature where
the goal is:

min
x∈Rd

Eξ[fξ(Eη[gη(x)])]. (12)

Despite having nested expectations in their formulations (CSO) and (12) are fundamentally different:
a) in stochastic composite optimization the inner randomness η is conditionally dependent on the
outer randomness ξ and b) in CSO the inner random function gη(x, ξ) depends on both ξ and η. These
differences lead to quite different sample complexity bounds for these problems, as explored in Hu
et al. [15]. In fact, Zhang and Xiao [41] presented a near optimal complexity ofO(min(ε−3,

√
nε−2))
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for stochastic composite optimization problems using nested variance reduction. While Wang et al.
[36] also use the "extrapolation" technique, their motivation and formula are significantly different
from ours and cannot reduce the bias in the CSO problem.

C Missing Details from Section 2

Lemma 1 (Moments of Dm) The moments of δ ∈ Dm are bounded as follows

E[(δ − E[δ])2] = σ2

m , |E[(δ − E[δ])3]| = σ3

m2 , E[(δ − E[δ])4] = σ4

m3 +
3(m−1)σ2

2

m3 .

More generally, for k ≥ 2, |E[(δ − E[δ])k]| = O(m−⌈k/2⌉).

Proof: Define δ̂ = δ − E[δ] as the centered random variable. Now

E[(δ − E[δ])k] = E[δ̂k].

So we focus on E[δ̂k] in the remainder of the proof. For k = 2,

|E[δ̂2]| = 1
m2 |E[

∑m
i=1 δ̂i]

2| = 1
m2

∣∣∣E [∑i δ̂
2
i + 2

∑
i<j δ̂iδ̂j

]∣∣∣ = σ2

m .

For k = 3,

|E[δ̂3]| = 1
m3 |E[

∑m
i=1 δ̂i]

3|

= 1
m3

∣∣∣E [∑i δ̂
3
i + 3

∑
i ̸=j δ̂

2
i δ̂j + 6

∑
i<j<k δ̂iδ̂j δ̂k

]∣∣∣
= σ3

m2 .

For k = 4,

|E[δ̂4]| = 1
m4 |E[

∑m
i=1 δ̂i]

4|

= 1
m4

∣∣∣E [∑i δ̂
4
i + 4

∑
i ̸=j δ̂

3
i δ̂j + 6

∑
i<j δ̂

2
i δ̂

2
j + 24

∑
i<j<k<l δ̂iδ̂j δ̂k δ̂l

]∣∣∣
= 1

m4

∣∣∣mE[δ̂4i ] + 6m(m−1)
2 E[δ̂2i ]E[δ̂

2
j ]
∣∣∣

= σ4

m3 +
3(m−1)σ2

2

m3 .

For k = 5,

|E[δ̂5]| = 1
m5 |E[

∑m
i=1 δ̂i]

5|

= 1
m5

∣∣∣E [∑i δ̂
5
i + 10

∑
i̸=j δ̂

3
i δ̂

2
j

]∣∣∣
= 1

m5

∣∣∣mE[δ̂5i ] + 10m(m− 1)E[δ̂3i ]E[δ̂
2
j ]
∣∣∣

= σ5

m4 + 10(m−1)σ3σ2

m4 .

For general k > 0, we expand the following term as a function of m

|E[δ̂k]| = 1
mk |E[

∑m
i=1 δ̂i]

k|.

As E[δ̂i] = 0 and δ̂i and δ̂j are independent for different i and j, the outcome has the following form

|E[δ̂k]| = 1

mk
O

 ∑
2a2+3a3+···+kak=k

ai≥0 ∀i

m
∑k

i=2 aiσa2
2 σa3

3 · · ·σ
ak

k

 (13)

where
∑k

i=2 ai is the count of independent {δ̂i} used in σa2
2 σa3

3 · · ·σ
a4
4 . Among the terms in (13),

the dominating one in terms of m is one with largest
∑k

i=2 ai, i.e.

|E[δ̂k]| =

{
1

mkO(mk/2)σ
k/2
2 if k even,

1
mkO(m⌊k/2⌋)σ

⌊k/2⌋−1
2 σ3 if k odd.

Then, we can simplify the upper right-hand side with

|E[δ̂k]| = O(m−k+⌊k/2⌋),

which gives all the desired results. □
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Proposition 2 (First-order Guarantee) Assume that Dm and q(·) satisfy Assumption 1 and 2 re-

spectively with k = 1. Then, ∀s ∈ R,
∣∣∣E [L(1)

Dm
q(s)

]
− q(s+ E[δ])

∣∣∣ ≤ a2σ2/(2m).

Proof: Let h = E[δ]. If the function q ∈ C2, then the Taylor expansion at s + h with remainders
leads to

E[q(s+ δ)] = q(s+ h) + q′(s+ h)E[δ − h] + 1
2 E[q′′(ϕ1)(δ − h)2]

where ϕ1 between s+ h and s+ δ. Then the error of extrapolation becomes

|E[q(s+ δ)]− q(s+ h)| =
∣∣ 1
2 E[q′′(ϕ1)(δ − h)2]

∣∣ ≤ a2

2 E[(δ − h)2].

By Assumption 2 and Lemma 1, we have that

|E[q(s+ δ)]− q(s+ h)| ≤ a2

2 E[(δ − h)2] = a2

2 E[(δ − h)2] = a2σ2

2m .

This completes the proof. □

Proposition 1 (Second-order Guarantee) Assume that distribution Dm and q(·) satisfies Assump-

tion 1 and 2 respectively with k = 2. Then, for all s ∈ R,
∣∣∣E [L(2)

Dm
q(s)

]
− q(s+ E[δ])

∣∣∣ ≤
4a3σ3+9a4σ

2
2

48m2 + 5a4

96
σ4−3σ2

2

m3 .

Proof: Let h = E[δ]. If the function q ∈ C4, then the Taylor expansion at s + h with remainders
leads to

E[q(s+ δ1)] =q(s+ h) + q′(s+ h)E[δ1 − h] + q′′(s+h)
2 E[(δ1 − h)2] + q(3)(s+h)

6 E[(δ1 − h)3]

+ 1
24 E[q(4)(ϕ1)(δ1 − h)4]

E[q(s+ δ2)] =q(s+ h) + q′(s+ h)E[δ2 − h] + q′′(s+h)
2 E[(δ2 − h)2] + q(3)(s+h)

6 E[(δ2 − h)3]

+ 1
24 E[q(4)(ϕ2)(δ2 − h)4]

E[q(s+ δ1+δ2
2 )] =q(s+ h) + q′(s+ h)E[ δ1+δ2

2 − h] + q′′(s+h)
2 E[( δ1+δ2

2 − h)2]

+ q(3)(s+h)
6 E[

(
δ1+δ2

2 − h
)3
] + 1

24 E[q(4)(ϕ3)
(
δ1+δ2

2 − h
)4
]

where ϕ1, ϕ2, ϕ3 between s+ h and s+ δ1, s+ δ2, s+ δ3 respectively.

As E[δ − h] = 0, the error of extrapolation becomes

|E[L2
Dm

q(s)]− q(s+ h)|

≤
∣∣∣2E

[
q(3)(s+h)

6

(
δ1+δ2

2 − h
)3]− 1

2

(
E[ q

(3)(s+h)
6 (δ1 − h)3] + E[ q

(3)(s+h)
6 (δ2 − h)3]

)∣∣∣
+
∣∣∣2E

[
q(4)(ϕ3)

24

(
δ1+δ2

2 − h
)4]− 1

2

(
E[ q

(4)(ϕ1)
24 (δ1 − h)4] + E[ q

(4)(ϕ2)
24 (δ2 − h)4]

)∣∣∣
≤a3

6

∣∣∣2E
[(

δ1+δ2
2 − h

)3]− 1
2

(
E[(δ1 − h)3] + E[(δ2 − h)3]

)∣∣∣
+
∣∣∣2E

[
q(4)(ϕ3)

24

(
δ1+δ2

2 − h
)4]− 1

2

(
E[ q

(4)(ϕ1)
24 (δ1 − h)4] + E[ q

(4)(ϕ2)
24 (δ2 − h)4]

)∣∣∣
≤a3

6

∣∣∣2E
[(

δ1+δ2
2 − h

)3]− 1
2

(
E[(δ1 − h)3] + E[(δ2 − h)3]

)∣∣∣
+
∣∣∣2E

[
|q(4)(ϕ3)|

24

(
δ1+δ2

2 − h
)4]

+ 1
2

(
E[ |q

(4)(ϕ1)|
24 (δ1 − h)4] + E[ |q

(4)(ϕ2)|
24 (δ2 − h)4]

)∣∣∣
≤a3

6

∣∣∣2E
[(

δ1+δ2
2 − h

)3]− 1
2

(
E[(δ1 − h)3] + E[(δ2 − h)3]

)∣∣∣
+ a4

24

∣∣∣2E
[(

δ1+δ2
2 − h

)4]
+ 1

2

(
E[(δ1 − h)4] + E[(δ2 − h)4]

)∣∣∣ .
where the second inequality uses the upper bound on q(3)(·) (Assumption 2) and the third inequality
uses (δ−h)4 is non-negative and the last inequality uses the uniform bound on q(4)(·) (Assumption 2).
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Then

|E[L2
Dm

q(s)]− q(s+ h)|

≤a3

12 |E(δ1 − h)3|+ a4

24

(
2E
(
δ1+δ2

2 − h
)4

+ E(δ1 − h)4
)

≤ a3σ3

12m2 + a4

24

(
σ4

4m3 +
3(2m−1)σ2

2

4m3 + σ4

m3 +
3(m−1)σ2

2

m3

)
≤ a3σ3

12m2 + a4

24

(
9σ2

2

2m2 +
5(σ4−3σ2

2)
4m3

)
≤ 4a3σ3+9a4σ

2
2

48m2 + 5a4

96
σ4−3σ2

2

m3 .

we first use that E[(δ1−h)3] = E[(δ2−h)3] = 4E[( δ1+δ2
2 −h)3] and the uses the bound on moments

in Lemma 1. Note that E
(
δ1+δ2

2 − h
)4

can be seen as the 4th order moments of a batch size of 2m.

□

Proposition 3 Assume q ∈ C6. Then L(3)
Dm

as defined below is a third-order extrapolation operator.

L(3)
Dm

q : s 7→ (− 1
36L

(2)
Dm

+ 5
9L

(2)
D2m
− 3

4L
(2)
D3m
− 16

9 L
(2)
D4m

+ 3L(2)
D6m

)q(s).

Proof: Let h = E[δ]. If q ∈ C2k, then q has the following Taylor expansion

E[q(s+ δ)] = q(s+ h)︸ ︷︷ ︸
zero order term

+q′(s+ h)E[δ − h] + q′′(s+h)
2 E[(δ − h)2]︸ ︷︷ ︸
second order term

+ . . .

+ q(2k−1)(s+h)
(2k−1)! E[(δ − h)2k−1] + 1

2k! E[q(2k)(ϕ)(δ − h)2k].

Eliminate the third order term in the Taylor expansion. Consider the following affine combination
which

F (3)
Dm

q : s 7→ α1L(2)
Dm

q(s) + α2L(2)
D2m

q (s) .

We determine α1 and α2 by expanding L(2)
Dm

q(s) and L(2)
D2m

q(s) and analyze the coefficients of terms:

• (Affine). Taylor expansion of F (3)
Dm

q(s) at s+ h should have zero order term q(s+ h), i.e.

α1q(s+ h) + α2q(s+ h) = q(s+ h).

• (Eliminate third term). Taylor expansion of F (3)
Dm

q(s) at s + h should have third order
term E[(δ − h)3]. That is,

α1 E[(δ1 − h)3] + α2 E
[(

δ1+δ2
2 − h

)3]
= 0.

This is equivalent to

α1 E[(δ1 − h)3] + α2

4 E
[
(δ1 − h)

3
]
= 0.

Therefore, α1 and α2 can be determined through the following linear system

α1 + α2 = 1

α1 +
1
4α2 = 0.

The solution is α1 = − 1
3 and α2 = 4

3 .

For k = 3 order extrapolation, consider the following

L(3)
Dm

q : s 7→ α′
1F

(3)
Dm

q(s) + α′
2F

(3)
D2m

q (s) + α′
3F

(3)
D3m

q (s) .

We determine α′
1, α′

2 and α′
3 by satisfying the following two conditions

• (Affine). Taylor expansion of L(3)
Dm

q(s) at s+ h should have zero order term q(x+ h), i.e.

(α′
1 + α′

2 + α′
3)q(x+ h) = q(x+ h).
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• Taylor expansion of L(3)
Dm

q(s) at s+ h should have 4th order term E[(δ − h)4]. That is

α′
1 E[(δ1 − h)4] + α′

2 E
[(

δ1+δ2
2 − h

)4]
+ α′

3 E
[(

δ1+δ2+δ3
3 − h

)4]
= 0.

This is equivalent to (
α′
1 +

α′
2

8 +
α′

3

27

)
E[(δ1 − h)4] = 0(

3
8α

′
2 +

2
9α

′
2

) (
E[(δ1 − h)2]

)2
= 0.

Therefore, α′
1, α′

2 and α′
3 can be determined through the following linear system

α′
1 + α′

2 + α′
3 = 1

α′
1 +

1
8α

′
2 +

1
27α

′
3 = 0

α′
1 +

3
8α

′
2 +

2
9α

′
3 = 0.

The solution is α′
1 = 1

12 , α′
2 = − 4

3 and α′
3 = 9

4 . Then consider the Taylor expansion of L(3)
Dm

q(s) at
s+ h with (2), we can

|E[L(3)
Dm

q(s)]− q(s+ h)| ≲
∣∣∣q(5)(s+ h)E[(δ − h)5]

∣∣∣+ ∣∣∣E[q(6)(ϕδ)(δ − h)6]
∣∣∣ ≲ O((a5 + a6)m

−3)

where the first inequality uses the fact that L(3)
Dm

is an affine mapping and the last inequality uses

Lemma 1. Therefore, L(3)
Dm

is a 3rd-order extrapolation operator. We can expand it into

L(3)
Dm

q : s 7→ 1
12

(
− 1

3L
(2)
Dm

q(s) + 4
3L

(2)
D2m

q (s)
)
− 4

3

(
− 1

3L
(2)
D2m

q(s) + 4
3L

(2)
D4m

q (s)
)

+ 9
4

(
− 1

3L
(2)
D3m

q(s) + 4
3L

(2)
D6m

q (s)
)

= (− 1
36L

(2)
Dm

+ 5
9L

(2)
D2m
− 3

4L
(2)
D3m
− 16

9 L
(2)
D4m

+ 3L(2)
D6m

)q(s).

□

Lemma 2 (Variance Bound) Assume that q : Rp → Rℓ is in C4 and Dm is the distribution in
Assumption 1. Suppose that the variance of q(s+ δ) is bounded as

E[∥q(s+ δ)− E[q(s+ δ)]∥22] ≤
V 2

m + C.

Then the variance of extrapolation L(2)
Dm

q(s) is upper bounded by

E

[∥∥∥L(2)
Dm

q(s)− E[L(2)
Dm

q(s)]
∥∥∥2
2

]
≤ 14(V

2

m + C).

Proof: Let us use the definition of L(2)
Dm

q(s):

E

[∥∥∥L(2)
Dm

q(s)− E[L(2)
Dm

q(s)]
∥∥∥2
2

]
≤ E

[∥∥∥2q(s+ δ1+δ2

2 )− q(s+δ1)+q(s+δ2)
2 − E

[
2q(s+ δ1+δ2

2 )− q(s+δ1)+q(s+δ2)
2

]∥∥∥2
2

]
≤ 3E

[∥∥2q(s+ δ1+δ2

2 )− E
[
2q(s+ δ1+δ2

2 )
]∥∥2

2

]
+ 3E

[∥∥∥ q(s+δ1)
2 − E

[
q(s+δ1)

2

]∥∥∥2
2

]
+ 3E[

∥∥∥ q(s+δ2)
2 − E

[
q(s+δ2)

2

]∥∥∥2
2
]

≤ 12( V
2

2m + C) + 3
4 (

V 2

m + C) + 3
4 (

V 2

m + C)

= 15V 2

2m + 27C
2 .

This completes the proof. □
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D Stationary Point Convergence Proofs from Section 3 (CSO)

In this section, we provide the convergence proofs for the CSO problem. We start by establishing
some helpful lemmas in Appendix D.1. In Appendix D.2, we reanalyze the BSGD algorithm to obtain
explicit bias and variance bounds, which are then useful when we analyze E-BSGD in Appendix D.3.
Similarly, we reanalyze BSpiderBoost in Appendix D.4 and use the resulting bias and variance
bounds for the analysis of E-BSpiderBoost in Appendix D.5.

Note that throughout our analyses, we define Et+1[·|t] as the expectation of randomness at time t+ 1
conditioning on the randomness until time t. When there is no ambiguity, we use E[·] instead of
Et+1[·|t].

D.1 Helpful Lemmas

Lemma 3 (Sufficient Decrease) Suppose Assumption 5 holds true and γ ≤ 1
2LF

then∥∥∇F (xt)
∥∥2
2
≤ 2(E[F (xt+1)]−F (xt))

γ + LF γEt+1
var + Et+1

bias ,

where E[·] denote conditional expectation over the randomness at time t conditioned on all of the
past randomness until time t.

Proof: In this proof, we use E[·] to denote conditional expectation over the randomness at time t
conditioned on all the past randomness until time t.

Let us expand F (xt+1) and apply the LF -smoothness of F

E[F (xt+1)] ≤ F (xt)− γ E[⟨∇F (xt), Gt+1⟩] + LF γ2

2 E[
∥∥Gt+1

∥∥2
2
].

Since E[
∥∥Gt+1

∥∥2
2
] = E[

∥∥Gt+1 − E[Gt+1]
∥∥2
2
] +
∥∥E[Gt+1]

∥∥2
2
= Et+1

var +
∥∥E[Gt+1]

∥∥2
2
, then

E[F (xt+1)] ≤ F (xt)− γ E[⟨∇F (xt), Gt+1⟩] + LF γ2

2 (Et+1
var +

∥∥E[Gt+1]
∥∥2
2
).

Expand the middle term with

−γ E[⟨∇F (xt), Gt+1⟩] = −γ
2

∥∥∇F (xt)
∥∥2
2
− γ

2

∥∥E[Gt+1]
∥∥2
2
+ γ

2

∥∥∇F (xt)− E[Gt+1]
∥∥2
2

= −γ
2

∥∥∇F (xt)
∥∥2
2
− γ

2

∥∥E[Gt+1]
∥∥2
2
+ γ

2E
t+1
bias .

Combine with the inequality

E[F (xt+1)] ≤ F (xt)− γ
2

∥∥∇F (xt)
∥∥2
2
− γ

2 (1− LF γ)
∥∥E[Gt+1]

∥∥2
2
+ γ

2E
t+1
bias + LF γ2

2 E
t+1
var .

By taking γ ≤ 1
2LF

, we have that

E[F (xt+1)] ≤ F (xt)− γ
2

∥∥∇F (xt)
∥∥2
2
− γ

4

∥∥E[Gt+1]
∥∥2
2
+ γ

2E
t+1
bias + LF γ2

2 E
t+1
var .

Re-arranging the terms we get the desired inequality. □

A consequence of Lemma 3 is the following result.

Lemma 4 (Descent Lemma) Suppose Assumption 5 holds true. By taking γ ≤ 1
2LF

, we have,

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[∥∥Et[Gt+1|t]
∥∥2
2

]
≤ 2(F (x0)−F⋆)

γT + 1
T

∑T−1
t=0 E[Et+1

bias ] +
LF γ
T

∑T−1
t=0 E[Et+1

var ]

where the expectation is taken over all randomness from t = 0 to T .

Proof: We denote the conditional expectation at time t in the descent lemma (Lemma 3) as Et+1[·|t]
which conditions on all past randomness until time t. Then the descent lemma can be written as

Et+1[F (xt+1)|t] ≤ F (xt)− γ
2

∥∥∇F (xt)
∥∥2
2
− γ

4

∥∥Et+1[Gt+1|t]
∥∥2
2
+ γ

2 Et+1[Et+1
bias |t] +

LF γ2

2 Et+1[Et+1
var |t].
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If we additionally consider the randomness at time t− 1, and apply Et[·|t− 1] to both sides

Et
[
Et+1[F (xt+1)|t]|t− 1

]
≤Et[F (xt)|t− 1]− γ

2 E[
∥∥∇F (xt)

∥∥2
2
|t− 1]

− Et
[
γ
4

∥∥Et+1[Gt+1|t]
∥∥2
2
|t− 1

]
+ γ

2 Et
[
Et+1[Et+1

bias |t]|t− 1
]

+ LF γ2

2 Et−1]
[
Et+1[Et+1

var |t]|t− 1
]
.

By the law of iterative expectations, we have Et
[
Et+1[·|t]|t− 1

]
= Et Et+1 [·|t− 1]

Et[Et+1
[
F (xt+1)|t− 1

]
] ≤Et[F (xt)|t− 1]− γ

2 E[
∥∥∇F (xt)

∥∥2
2
|t− 1]

− Et
[
γ
4

∥∥Et+1[Gt+1|t]
∥∥2
2
|t− 1

]
+ γ

2 Et
[
Et+1

[
Et+1

bias |t− 1
]]

+ LF γ2

2 Et[Et
[
Et+1

var |t− 1
]
].

Similarly, we can apply Et−1[·|t− 2], Et−2[·|t− 3], . . ., E2[·|1] and finally E1[·]

E1 . . . [Et+1
[
F (xt+1)

]
] ≤E1 . . . [Et[F (xt)]]− γ

2 E1 . . . [Et[
∥∥∇F (xt)

∥∥2
2
]]

−E1 . . . [Et[γ4
∥∥Et+1[Gt+1|t]

∥∥2
2
]] + γ

2 E1 . . . [Et+1
[
Et+1

bias

]
]

+ LF γ2

2 E1 . . . [Et
[
Et+1

var

]
].

Now that both sides of the inequality have no randomness, we can simplify the notation by applying
Et+1 . . . [Et[·]] to both sides and by denoting

E[·] = E1 . . . [E+1[·]].
Then the descent lemma becomes

E[F (xt+1)] ≤ E[F (xt)]− γ
2 E[

∥∥∇F (xt)
∥∥2
2
]− γ

4 E[
∥∥Et+1[Gt+1|t]

∥∥2
2
] + γ

2 E[Et+1
bias ] +

LF γ2

2 E[Et+1
var ].

Now we can sum the descent lemmas from t = 0 to T − 1∑T−1
t=0 E[F (xt+1)] ≤

∑T−1
t=0 E[F (xt)]− γ

2

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
− γ

4

∑T−1
t=0 E

[∥∥Et+1[Gt+1|t]
∥∥2
2

]
+ γ

2

∑T−1
t=0 E[Et+1

bias ] +
LF γ2

2

∑T−1
t=0 E[Et+1

var ].

After simplification and division by T , we get

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[∥∥Et+1[Gt+1|t]
∥∥2
2

]
≤ 2(E[F (xT )]−E[F (x0)])

γT + γ
2

1
T

∑T−1
t=0 E[Et+1

bias ] +
LF γ2

2
1
T

∑T−1
t=0 E[Et+1

var ]

≤ 2(E[F (xT )]−F⋆)
γT + 1

T

∑T−1
t=0 E[Et+1

bias ] +
LF γ
T

∑T−1
t=0 E[Et+1

var ].

□

The following corollary is a consequence of Proposition 1.

Corollary 1 Assume∇fξ in CSO satisfies

al := sup
x

sup
ξ

∥∥∇l+1fξ(x)
∥∥
2
<∞, l = 1, 2, 3, 4.

Let’s further assume that the higher order moments of gη(·) are bounded,

σk = sup
x

sup
ξ

Eη|ξ

[∑p
i=1

[
gη(x)− Eη|ξ[gη(x)]

]k
i

]
<∞, k = 1, 2, 3, 4

where [·]i refers to the i-th coordinate of a vector. Consider the L(2)

Dt+1
g,ξ

∇fξ(0) defined in (6), then∥∥∥∥E

[
L(2)

Dt+1
g,ξ

∇fξ(0)
]
−∇fξ(Eη|ξ[gη(x

t)])

∥∥∥∥2
2

≤ C2
e

m4 ∀ξ,

where C2
e (f ; g) :=

(
8a3σ3+18a4σ

2
2+5a4σ4

96

)2
.
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Proof: The Proposition 1 gives the following upper bound

∥∥∥∥E

[
L(2)

Dt+1
g,ξ

∇fξ(0)
]
−∇fξ(Eη|ξ[gη(x

t)])

∥∥∥∥2
2

≤
(

4a3σ3+9a4σ
2
2

48m2 + 5a4

96
σ4−3σ2

2

m3

)2
.

For simplicity, we can relax the upper bound to

∥∥∥∥E

[
L(2)

Dt+1
g,ξ

∇fξ(0)
]
−∇fξ(Eη|ξ[gη(x

t)])

∥∥∥∥2
2

≤ 1
m4

(
8a3σ3+18a4σ

2
2+5a4σ4

96

)2
.

□

D.2 Convergence of BSGD

In this section, we reanalyze the BSGD algorithm of [16] to obtain bounds on bias and variance of its
gradient estimates. Theorem 6 shows that BSGD achieves an O(ε−6) sample complexity.

Lemma 5 (Bias and Variance of BSGD) The bias and variance of BSGD are

Et+1
bias ≤

σ2
bias
m , Et+1

var ≤
σ2

in
m + σ2

out

where σ2
in = ζ2gC

2
f + σ2

gC
2
gL

2
f , σ2

out = C2
F , and σ2

bias = σ2
gC

2
gL

2
f .

Proof: Denote Gt+1 = Gt+1
BSGD (5) and denote E[·] as the conditional expectation Et+1[·|t] which

conditions on all past randomness until time t. Note that the∇gη̃ can be estimated without bias, i.e.

Eη̃|ξ

[
1
m

∑
η̃∈H̃ξ

∇gη̃(x)
]
= Eη̃|ξ [∇gη̃(x)] ,

Then let’s first look at the bias of BSGD

Et+1
bias =

∥∥∇F (xt+1)− E[Gt+1]
∥∥2
2

=
∥∥∥Eξ

[
(Eη̃|ξ[∇gη̃(xt)])⊤

(
∇fξ(Eη|ξ[gη(x

t)])− Eη|ξ[∇fξ( 1
m

∑
η∈Hξ

gη(x
t))]
)]∥∥∥2

2

≤ C2
g Eξ

[∥∥∥∇fξ(Eη|ξ[gη(x
t)])− Eη|ξ[∇fξ( 1

m

∑
η∈Hξ

gη(x
t))]
∥∥∥2
2

]
≤ C2

gL
2
f Eξ

[
Eη|ξ

[∥∥∥Eη|ξ[gη(x
t)]− 1

m

∑
η∈Hξ

gη(x
t)
∥∥∥2
2

]]
≤ C2

gL
2
f

m Eξ

[
Eη|ξ

[∥∥Eη|ξ[gη(x
t)]− gη(x

t)
∥∥2
2

]]
=

σ2
gC

2
gL

2
f

m =
σ2

bias
m .

For the first inequality, we take the expectation outside the norm and bound∇gη̃ with Cg .

On the other hand, the variance of BSGD can be decomposed into inner variance and outer variance

Et+1
var = Eξ[Eη|ξ,η̃|ξ[

∥∥Gt+1 − Eξ[Eη|ξ,η̃|ξ[G
t+1]]

∥∥2
2
]]

= Eξ[Eη|ξ,η̃|ξ[
∥∥(Gt+1 − Eη|ξ,η̃|ξ[G

t+1]) + (Eη|ξ,η̃|ξ[G
t+1]− Eξ[Eη|ξ,η̃|ξ[G

t+1]])
∥∥2
2
]]

= Eξ[Eη|ξ,η̃|ξ[
∥∥Gt+1 − Eη|ξ,η̃|ξ[G

t+1]
∥∥2
2
]]︸ ︷︷ ︸

Inner variance

+Eξ[
∥∥Eη|ξ,η̃|ξ[G

t+1]− Eξ[Eη|ξ,η̃|ξ[G
t+1]]

∥∥2
2
]︸ ︷︷ ︸

Outer variance

.
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The inner variance is bounded as follows

Eξ[Eη|ξ,η̃|ξ[
∥∥Gt+1 − Eξ[Eη|ξ,η̃|ξ[G

t+1]
∥∥2
2
]]

= Eξ

[
Eη|ξ,η̃|ξ

[∥∥∥( 1
m

∑
η̃∈H̃ξ

∇gη̃(xt)− Eη̃|ξ[∇gη̃(xt)])⊤∇fξ( 1
m

∑
η∈Hξ

gη(x
t))
∥∥∥2
2

]]
+ Eξ

[
Eη|ξ

[∥∥∥(Eη̃|ξ[∇gη̃(xt)])⊤(∇fξ( 1
m

∑
η∈Hξ

gη(x
t))− Eη|ξ[∇fξ( 1

m

∑
η∈Hξ

gη(x
t))])

∥∥∥2
2

]]
≤ C2

f Eξ

[
Eη̃|ξ

[∥∥∥ 1
m

∑
η̃∈H̃ξ

∇gη̃(xt)− Eη̃|ξ[∇gη̃(xt)]
∥∥∥2
2

]]
+ C2

g Eξ

[
Eη|ξ

[∥∥∥∇fξ( 1
m

∑
η∈Hξ

gη(x
t))− Eη|ξ[∇fξ( 1

m

∑
η∈Hξ

gη(x
t))]
∥∥∥2
2

]]
= C2

f Eξ

[
Eη̃|ξ

[∥∥∥ 1
m

∑
η̃∈H̃ξ

∇gη̃(xt)− Eη̃|ξ[∇gη̃(xt)]
∥∥∥2
2

]]
+ C2

g Eξ

[
Eη|ξ

[∥∥∥∇fξ( 1
m

∑
η∈Hξ

gη(x
t))−∇fξ(Eη[gη(x

t)])
∥∥∥2
2

]]
− C2

g Eξ

[∥∥∥∇fξ(Eη[gη(x
t)])− Eη|ξ[∇fξ( 1

m

∑
η∈Hξ

gη(x
t))]
∥∥∥2
2

]
≤ ζ2

gC
2
f

m + C2
gLf Eξ

[
Eη|ξ

[∥∥∥ 1
m

∑
η∈Hξ

gη(x
t)− Eη|ξ[gη(x

t)]
∥∥∥2
2

]]
≤ C2

fζ
2
g

m +
C2

gLf

m Eξ

[
Eη|ξ

[∥∥gη(xt)− Eη|ξ[gη(x
t)]
∥∥2
2

]]
≤ ζ2

gC
2
f+σ2

gC
2
gL

2
f

m =
σ2

in
m .

The outer variance is independent of the inner batch size and can be bounded by

Eξ[
∥∥Eη|ξ,η̃|ξ[G

t+1]− Eξ[Eη|ξ,η̃|ξ[G
t+1]]

∥∥2
2
] ≤ Eξ[

∥∥Eη|ξ,η̃|ξ[G
t+1]

∥∥2
2
] ≤ C2

fC
2
g = C2

F = σ2
out

Therefore, the variance is bounded as follows

Et+1
var ≤

σ2
in

m + σ2
out.

This completes the proof. □

Theorem 6 (BSGD Convergence) Consider the (CSO) problem. Suppose Assumptions 3, 4, 5 holds
true. Let step size γ ≤ 1/(2LF ). Then for BSGD, xs picked uniformly at random among {xt}T−1

t=0

satisfies: E[∥∇F (xs)∥22] ≤ ε2, for nonconvex F , if the inner batch size m = Ω
(
σ2

biasε
−2
)

and the
number of iterations T = Ω

(
(F (x0)− F ⋆)LF (σ

2
in/m + σ2

out)ε
−4
)
, where σ2

in = ζ2gC
2
f + σ2

gC
2
gL

2
f ,

σ2
out = C2

F , and σ2
bias = σ2

gC
2
gL

2
f .

Proof: Denote Gt+1 = Gt+1
BSGD (1). Using descent lemma (Lemma 4) and bias-variance bounds of

BSGD (Lemma 5)

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[∥∥Et+1[Gt+1|t]
∥∥2
2

]
≤ 2(E[F (xT )]−F⋆)

γT + LF γ(
σ2

in
m + σ2

out) +
σ2

bias
m

Then we can minimize the right-hand size by optimizing γ to

γ =

√
2(F (x0)−F⋆)

LF (σ2
in/m+σ2

out)T

which is smaller than the bound of step size γ ≤ 1
2LF

if T is greater than the following constant
which does not rely on the target precision ε

T ≥ 8LF (F (x0)−F⋆)
σ2

in/m+σ2
out

.
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Then the upper bound of gradient becomes

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
≤
√

2(F (x0)−F⋆)LF (σ2
in/m+σ2

out)
T +

σ2
bias
m .

By taking inner batch size of at least

m ≥ σ2
bias
ε2 ,

and iteration T greater than

T ≥ 2(F (x0)−F⋆)LF (σ2
in/m+σ2

out)
ε4 ,

we have that
1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
≤ 2ε2.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee. □

The resulting sample complexity of BSGD to get to an ε-stationary point is O(ε−6).

D.3 Convergence of E-BSGD

In this section, we analyze the sample complexity of Algorithm 2 (E-BSGD) for the CSO problem.

Lemma 6 (Bias and Variance of E-BSGD) The bias and variance of E-BSGD are

Et+1
bias ≤

σ̃2
bias
m4 , Et+1

var ≤ 14(
σ2

in
m + σ2

out)

where σ2
in = ζ2gC

2
f + σ2

gC
2
gL

2
f , σ2

out = C2
F , and σ̃2

bias = C2
gC

2
e with C2

e defined in Corollary 1.

Proof: Denote Gt+1 = Gt+1
E-BSGD (7). Like previously (Lemma 5), let E[·] denote the conditional

expectation Et+1[·|t] which conditions on all past randomness until time t. In E-BSGD, we apply
extrapolation to∇fξ(·). The bias can be estimated with the help of Corollary 1 as

Et+1
bias =

∥∥∇F (xt+1)− E[Gt+1]
∥∥2
2

≤ C2
g Eξ

[∥∥∥∥∇fξ(Eη|ξ[gη(x
t)])− E

[
L(2)

Dt+1
g,ξ

∇fξ(0)
]∥∥∥∥2

2

]
≤ C2

gC
2
e

m4 .

Since the variance of BSGD in Lemma 5 is upper bounded by σ2
in

m + σ2
out, then Lemma 2 gives

Et+1
var ≤ 14(σ

2
in/m + σ2

out).

This proves the claimed bounds. □

Theorem 3 [E-BSGD Convergence] Consider the (CSO) problem. Suppose Assumptions 3, 4, 5, 6
hold true and LF , CF , L̃F , Cg, F

⋆ are constants and Ce(f ; g) :=
8a3σ3+18a4σ

2
2+5a4σ4

96 defined in
Corollary 1 are associated with second order extrapolation in the CSO problem. Let step size
γ ≤ 1/(2LF ). Then the output xs of E-BSGD (Algorithm 2) satisfies: E[∥∇F (xs)∥22] ≤ ε2, for
nonconvex F , if the inner batch size m = Ω(CeCgε

−1/2) , and the number of iterations

T = Ω(LF (F (x0)− F ⋆)(L̃
2
F/m + C2

F )ε
−4).

Proof: The proof is very similar to Theorem 6. Denote Gt+1 = Gt+1
E-BSGD (7). Using descent lemma

(Lemma 4) and bias-variance bounds of E-BSGD (Lemma 6)

1
T

∑T−1
t=0 E

[
∥∇F (xt)∥22

]
+ 1

2
1
T

∑T−1
t=0 E

[∥∥Et+1[Gt+1|t]
∥∥2
2

]
≤ 2(E[F (xT )]−F⋆)

γT + 14LF γ(
σ2

in
m + σ2

out) +
C2

gC
2
e

m4 .
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Then we optimize γ to

γ =

√
(F (x0)−F⋆)

7LF (σ2
in/m+σ2

out)T

which is smaller than the bound of step size γ ≤ 1
2LF

if T is greater than the following constant
which does not rely on the target precision ε

T ≥ 4LF (F (x0)−F⋆)

7(σ2
in/m+σ2

out)
.

Then the gradient norm has the following upper bound.

1
T

∑T−1
t=0 ∥∇F (xt)∥22 ≤ 4

√
7(F (x0)−F⋆)LF (σ2

in+σ2
out)

T +
σ̃2

bias
m4 .

In order to reach ε-stationary point, i.e.

1
T

∑T−1
t=0 ∥∇F (xt)∥22 ≤ ε2,

we can enforce

4

√
7(F (x0)−F⋆)LF (σ2

in/m+σ2
out)

T ≤ ε2,
C2

gC
2
e

m4 ≤ ε2.

By taking inner batch size of at least

m = Ω(σ̃
1/2
bias ε

−1/2),

and iteration T greater than

T ≥ 112(F (x0)−F⋆)LF (
σ2

in
m +σ2

out)

ε4 ,

we have that
1
T

∑T−1
t=0 ∥∇F (xt)∥22 ≤ 3ε2.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee. □

D.4 Convergence of BSpiderBoost

In this section, we reanalyze the BSpiderBoost algorithm of [16] to obtain bounds on bias and
variance of its gradient estimates. Theorem 6 shows that BSpiderBoost achieves an O(ε−5) sample
complexity.

Let Gt+1
BSB as the BSpiderBoost gradient estimate

Gt+1
BSB =

{
Gt

BSB + 1
B2

∑
ξ∈B2

(Gt+1
BSGD −Gt

BSGD) with prob. 1− pout
1
B1

∑
ξ∈B1

Gt+1
BSGD with prob. pout.

Lemma 7 (Bias and Variance of BSpiderBoost) If γ ≤ min{ 1
2LF

,
√
B2

6LF
}, then the bias and vari-

ance of BSpiderBoost are

1
T

∑T−1
t=0 E[Et+1

bias ] ≤
2σ2

bias
m + (1−pout)

3

poutB2

56L2
F γ2

T

∑T−1
t=0 E[

∥∥Et+1[Gt+1|t]
∥∥2
2
] + ( 1

Tpout
+ 1) 4(1−pout)

2

B1
(
σ2

in
m + σ2

out)

1
T

∑T−1
t=0 E[Et+1

var ] ≤ 28(1−pout)L
2
F γ2

B2

1
T

∑T−1
t=0 E[

∥∥Et+1[Gt+1|t]
∥∥2
2
] + ( 1

T + pout)
2
B1

(
σ2

in
m + σ2

out),

where σ2
in = ζ2gC

2
f + σ2

gC
2
gL

2
f , σout = C2

F , and σ2
bias = σ2

gC
2
gL

2
f .

Proof: Denote Gt+1 = Gt+1
BSB (8). Like previously (Lemma 5), let E[·] denote the conditional

expectation Et+1[·|t] which conditions on all past randomness until time t. Denote Gt+1
L and Gt+1

S
as the large batch and small batch in BSpiderBoost separately, i.e.,{

Gt+1
L = 1

B1

∑
ξ∈B1

Gt+1
BSGD with prob. pout

Gt+1
S = Gt + 1

B2

∑
ξ∈B2

(Gt+1
BSGD −Gt

BSGD) with prob. 1− pout.
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The bias of BSpiderBoost can be decomposed to its distance to BSGD and the distance from BSGD
to the full gradient, i.e.,

Et+1
bias =

∥∥∇F (xt+1)− E[Gt+1]
∥∥2
2

≤ 2
∥∥∇F (xt+1)− E[Gt+1

BSGD]
∥∥2
2
+ 2

∥∥E[Gt+1
BSGD]− E[Gt+1]

∥∥2
2

≤ 2σ2
bias

m + 2
∥∥E[Gt+1

BSGD]− E[Gt+1]
∥∥2
2
.

(14)

where the last inequality uses the bias of BSGD from Lemma 5. Then the second term can be bounded
as follows ∥∥E[Gt+1

BSGD]− E[Gt+1]
∥∥2
2
= (1− pout)

2
∥∥E[Gt+1

BSGD]− E[Gt+1
S ]

∥∥2
2

= (1− pout)
2
∥∥E[Gt

BSGD]−Gt
∥∥2
2
.

By taking the expectation of randomness of Gt

∥∥E[Gt+1
BSGD]− E[Gt+1]

∥∥2
2
= (1− pout)

2
(∥∥E[Gt

BSGD]− E[Gt]
∥∥2
2
+ E

∥∥Gt − E[Gt]
∥∥2
2

)
= (1− pout)

2
(∥∥E[Gt

BSGD]− E[Gt]
∥∥2
2
+ Etvar

)
Note that

∥∥E[G1
BSGD]− E[G1]

∥∥2
2
= 0 as the first iteration always chooses the large batch. Then as

we always use large batch at t = 0 we know that

1
T

∑T−1
t=0

∥∥E[Gt+1
BSGD]− E[Gt+1]

∥∥2
2
≤ (1−pout)

2

pout

1
T

∑T−1
t=0 Et+1

var . (15)

Therefore combine (14) and (15) we can upper bound the bias

1
T

∑T−1
t=0 E

t+1
bias ≤

2σ2
bias

m + 2(1−pout)
2

pout

1
T

∑T−1
t=0 Et+1

var . (16)

Variance. Now we consider the variance,

Et+1
var = E

[∥∥Gt+1 − E[Gt+1]
∥∥2
2

]
≤ (1− pout)E

[∥∥Gt+1
S − E[Gt+1

S ]
∥∥2
2

]
+ pout E

[∥∥Gt+1
L − E[Gt+1

L ]
∥∥2
2

]
= (1−pout)

B2
E
[∥∥Gt+1

BSGD −Gt
BSGD − E[Gt+1

BSGD −Gt
BSGD]

∥∥2
2

]
+ pout

B1
E
[∥∥Gt+1

BSGD − E[Gt+1
BSGD]

∥∥2
2

]
≤ 1−pout

B2
E
[∥∥Gt+1

BSGD −Gt
BSGD − E[Gt+1

BSGD −Gt
BSGD]

∥∥2
2

]
+ pout

B1
(
σ2

in
m + σ2

out)

(17)

where the last equality is because the large batch in BSpiderBoost is similar to BSGD.

E1var = E
[∥∥G1 − E[G1]

∥∥2
2

]
= E

[∥∥G1
L − E[G1

L]
∥∥2
2

]
= 1

B1
E
[∥∥G1

BSGD − E[G1
BSGD]

∥∥2
2

]
≤ 1

B1
(
σ2

in
m +σ2

out).

(18)
Finally, we expand the variance at small batch size epoch

E
[∥∥Gt+1

BSGD −Gt
BSGD − E[Gt+1

BSGD −Gt
BSGD]

∥∥2
2

]
= E

[∥∥Gt+1
BSGD −Gt

BSGD − Eη|ξ,η̃|ξ[G
t+1
BSGD −Gt

BSGD]
∥∥2
2

]
︸ ︷︷ ︸

Inner variance Tin

+ Eξ

[∥∥Eη|ξ,η̃|ξ[G
t+1
BSGD −Gt

BSGD]− E[Gt+1
BSGD −Gt

BSGD]
∥∥2
2

]
︸ ︷︷ ︸

Outer variance Tout

.
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The outer variance Tout can be upper bounded as

Tout ≤ Eξ

[∥∥Eη|ξ,η̃|ξ[G
t+1
BSGD −Gt

BSGD]
∥∥2
2

]
= Eξ

[∥∥∥(Eη̃|ξ[∇gη̃(xt)])⊤ Eη|ξ[∇fξ( 1
m

∑
η∈Hξ

gη(x
t))]− (Eη̃|ξ[∇gη̃(xt−1)])⊤ Eη|ξ[∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))]

∥∥∥2
2

]
≤ 2Eξ

[∥∥∥(Eη̃|ξ[∇gη̃(xt)]− Eη̃|ξ[∇gη̃(xt−1)])⊤ Eη|ξ[∇fξ( 1
m

∑
η∈Hξ

gη(x
t))]
∥∥∥2
2

]
+ 2Eξ

[∥∥∥(Eη̃|ξ[∇gη̃(xt−1)])⊤ Eη|ξ[∇fξ( 1
m

∑
η∈Hξ

gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))]

∥∥∥2
2

]
≤ 2L2

gC
2
f

∥∥xt − xt−1
∥∥2
2
+ 2C4

gL
2
f

∥∥xt − xt−1
∥∥2
2

= 2L2
F

∥∥xt − xt−1
∥∥2
2

= 2L2
F γ

2
∥∥Gt

∥∥2
2
.

The inner variance can be bounded by

Tin ≤ 4E

[∥∥∥( 1
m

∑
η̃∈H̃ξ

(∇gη̃(xt)−∇gη̃(xt−1))− Eη̃|ξ[∇gη̃(xt)−∇gη̃(xt−1)])⊤∇fξ( 1
m

∑
η∈Hξ

gη(x
t))
∥∥∥2
2

]
+ 4E

[∥∥∥(Eη̃|ξ[∇gη̃(xt)−∇gη̃(xt−1)])⊤(∇fξ( 1
m

∑
η∈Hξ

gη(x
t))− Eη|ξ[∇fξ( 1

m

∑
η∈Hξ

gη(x
t))])

∥∥∥2
2

]
+ 4E

[∥∥∥∥( 1
m

∑
η̃∈H̃ξ

∇gη̃(xt−1))⊤
(
∇fξ( 1

m

∑
η∈Hξ

gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))

− Eη|ξ

[
∇fξ( 1

m

∑
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gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))

])∥∥∥∥2
2

]
+ 4E

[ ∥∥∥( 1
m

∑
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∇gη̃(xt−1)− Eη̃|ξ[∇gη̃(xt−1)])⊤(∇fξ( 1
m

∑
η∈Hξ

gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
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∥∥∥2
2

]
≤ 4C2

f

m E
[∥∥∇gη̃(xt)−∇gη̃(xt−1)− Eη̃|ξ[∇gη̃(xt)−∇gη̃(xt−1)]

∥∥2
2

]
+

4L2
gC

2
f

m

∥∥xt − xt−1
∥∥2
2

+ 4C2
g E

[∥∥∥∥∇fξ( 1
m

∑
η∈Hξ

gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))

− Eη|ξ[∇fξ( 1
m

∑
η∈Hξ

gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))]

∥∥∥∥2
2

]
+

4C4
gL

2
f

m

∥∥xt − xt−1
∥∥2
2
.

Then we have that

Tin ≤
4L2

gC
2
f

m

∥∥xt − xt−1
∥∥2
2
+

4L2
gC

2
f

m

∥∥xt − xt−1
∥∥2
2

+ 4C2
g E

[∥∥∥∇fξ( 1
m
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η∈Hξ

gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))− (∇fξ(Eη|ξ[gη(x

t)])−∇fξ(Eη|ξ[gη(x
t−1)]))

∥∥∥2
2

]
+ 4C2

g E

[∥∥∥∥(∇fξ(Eη|ξ[gη(x
t)])−∇fξ(Eη|ξ[gη(x

t−1)]))

− Eη|ξ[∇fξ( 1
m

∑
η∈Hξ

gη(x
t))−∇fξ( 1

m

∑
η∈Hξ

gη(x
t−1))]

∥∥∥∥2
2

]
+

4C4
gL

2
f

m

∥∥xt − xt−1
∥∥2
2

≤ 8L2
gC

2
f

m

∥∥xt − xt−1
∥∥2
2
+

8C4
gL

2
f

m

∥∥xt − xt−1
∥∥2
2
+

4C4
gL

2
f

m

∥∥xt − xt−1
∥∥2
2

≤ 12L2
F

m

∥∥xt − xt−1
∥∥2
2

=
12L2

F γ2

m

∥∥Gt
∥∥2
2
.
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To sum up, the variance is bounded by

Et+1
var ≤

2(1−pout)L
2
F γ2

B2
(1 + 6

m )
∥∥Gt

∥∥2
2
+ pout

B1
(
σ2

in
m + σ2

out)

≤ 14(1−pout)L
2
F γ2

B2

∥∥Gt
∥∥2
2
+ pout

B1
(
σ2

in
m + σ2

out)

=
14(1−pout)L

2
F γ2

B2
Et[
∥∥Gt

∥∥2
2
|t− 1] + pout

B1
(
σ2

in
m + σ2

out).

Then averaging over time and now we redefine E[·] = ET . . . [E0[·]]
1
T

∑T−1
t=0 E[Et+1

var ] ≤ 14(1−pout)L
2
F γ2

B2

1
T

∑T−1
t=0 E[

∥∥Gt+1
∥∥2
2
] +

E1
var
T + pout

B1
(
σ2

in
m + σ2

out)

=
14(1−pout)L

2
F γ2

B2

1
T

∑T−1
t=0 (E[Et+1

var ] + E[
∥∥Et[Gt+1|t]

∥∥2
2
]) +

E1
var
T + pout

B1
(
σ2

in
m + σ2

out).

If we take γ ≤
√
B2

6LF
, then 14(1−pout)L

2
F γ2

B2
≤ 1

2 , therefore

1
T

∑T−1
t=0 E[Et+1

var ] ≤ 28(1−pout)L
2
F γ2

B2

1
T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
] +

E1
var
T + 2pout

B1
(
σ2

in
m + σ2

out)

(18)
≤ 28(1−pout)L

2
F γ2

B2

1
T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
] + ( 1

T + pout)
2
B1

(
σ2

in
m + σ2

out)

Then with (16), we can bound the bias by
1
T

∑T−1
t=0 E[Et+1

bias ] ≤
2σ2

bias
m + (1−pout)

3

poutB2

56L2
F γ2

T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
] + ( 1

Tpout
+ 1) 4(1−pout)

2

B1
(
σ2

in
m + σ2

out)

□

Theorem 7 (BSpiderBoost Convergence) Consider the (CSO) problem. Suppose Assump-
tions 3, 4, 5 holds true. Let step size γ ≤ 1/(13LF ). Then for BSpiderBoost, xs picked uni-
formly at random among {xt}T−1

t=0 satisfies: E[∥∇F (xs)∥22] ≤ ε2, for nonconvex F , if the in-
ner batch size m = Ω(σ2

biasε
−2), the hyperparameters of the outer loop of BSpiderBoost are

B1 = (σ2
in/m + σ2

out)ε
−2, B2 = O(ε−1), pout = 1/B2, and the number of iterations

T = Ω
(
LF (F (x0)− F ⋆)ε−2

)
, where σ2

in = ζ2gC
2
f + σ2

gC
2
gL

2
f , σ2

out = C2
F , and σ2

bias = σ2
gC

2
gL

2
f .

Proof: Denote Gt+1 = Gt+1
BSB (8). Using descent lemma (Lemma 4) and bias-variance bounds of

BSpiderBoost (Lemma 7)
1
T

∑T−1
t=0 E[∥∇F (xt)∥22] +

1
2T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
]

≤ 2(F (x0)−F⋆)
γT + LF γ

1
T

∑T−1
t=0 E[Et+1

var ] + 1
T

∑T−1
t=0 E[Et+1

bias ]

≤ 2(F (x0)−F⋆)
γT + LF γ

1
T

∑T−1
t=0 E[Et+1

var ] +
2σ2

bias
m + 2

pout

1
T

∑T−1
t=0 E[Et+1

var ]

≤ 2(F (x0)−F⋆)
γT +

2σ2
bias

m + 3
pout

1
T

∑T−1
t=0 E[Et+1

var ]

where the last inequality use γ ≤ 1
2LF

. Use the variance estimation of Gt+1 and choose B2pout = 1

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] +

1
2T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
]

≤ 2(F (x0)−F⋆)
γT +

2σ2
bias

m + 84L2
F γ

2 1
T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
] + ( 1

Tpout
+ 1) 6

B1
(
σ2

in
m + σ2

out).

Now we can let γ ≤ 1
13LF

such that 84L2
F γ

2 ≤ 1
2

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] ≤

2(F (x0)−F⋆)
γT +

2σ2
bias

m + ( 1
Tpout

+ 1) 6
B1

(
σ2

in
m + σ2

out).

In order for the right-hand side to be ε2, the inner batch size

m ≥ 2σ2
bias

ε2 ,

and the outer batch size

B1 =
σ2

in/m+σ2
out

ε2 , B2 =
√

B1, pout =
1
B2

.

The step size γ is upper bounded by min{ 1
2LF

,
√
B2

6LF
, 1
13LF

}. As B2 ≥ 1, we can take γ = 1
13LF

. So
we need iteration T greater than

T ≥ 26LF (F (x0)−F⋆)
ε2 .

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee. □

The resulting sample complexity of BSpiderBoost to get to an ε-stationary point is O(ε−5).
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D.5 Convergence of E-BSpiderBoost

In this section, we analyze the sample complexity of Algorithm 3 (E-BSpiderBoost) for the CSO
problem.

Lemma 8 (Bias and Variance of E-BSpiderBoost) The bias and variance of E-BSpiderBoost are

1
T

∑T−1
t=0 E[Et+1

var ] ≤ 28(1−pout)L
2
F γ2

B2

1
T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
] + ( 1

Tpout
+ 1) 28pout

B1
(
σ2

in
m + σ2

out)

1
T

∑T−1
t=0 E[Et+1

bias ] ≤
2σ̃2

bias
m4 + 2

pout

(1−pout)
2

T

∑T−1
t=0 E[Et+1

var ],

where σ2
in := ζ2gC

2
f + σ2

gC
2
gL

2
f , σout = C2

F , and σ̃2
bias = C2

gC
2
e with C2

e defined in Corollary 1.

Proof: Denote Gt+1 = Gt+1
E-BSB (9). Like previously (Lemma 5), let E[·] denote the conditional

expectation Et[·|t] which conditions on all past randomness until time t. Let Gt+1 = Gt+1
E-BSB be the

E-BSpiderBoost update. We expand the bias as follows

Et+1
bias =

∥∥∇F (xt+1)− E[Gt+1]
∥∥2
2

≤ 2
∥∥∇F (xt+1)− E[Gt+1

E-BSGD

∥∥2
2
] + 2

∥∥E[Gt+1
E-BSGD]− E[Gt+1]

∥∥2
2
.

From Lemma 6, we know that ∥∥∇F (xt+1)− E[Gt+1
E-BSGD]

∥∥2
2
≤ σ̃2

bias
m4 .

The distance between E[Gt+1
E-BSGD] and E[Gt+1] can be bounded as follows.∥∥E[Gt+1

E-BSGD]− E[Gt+1]
∥∥2
2
= (1− pout)

2
∥∥E[Gt+1

E-BSGD]− (Gt + E[Gt+1
E-BSGD −Gt

E-BSGD])
∥∥2
2

= (1− pout)
2
∥∥E[Gt

E-BSGD]−Gt
∥∥2
2

Taking expectation with respect to Gt∥∥E[Gt+1
E-BSGD]− E[Gt+1]

∥∥2
2
≤ (1− pout)

2(
∥∥E[Gt

E-BSGD]− E[Gt]
∥∥2
2
+
∥∥Gt − E[Gt]

∥∥2
2
).

where
∥∥E[G1

E-BSGD]− E[G1]
∥∥2
2
= 0. By averaging over time we have

1
T

∑T−1
t=0

∥∥E[Gt+1
E-BSGD]− E[Gt+1]

∥∥2
2
≤ 1

pout

(1−pout)
2

T

∑T−1
t=0 E[Et+1

var ].

Then the bias is bounded by

1
T

∑T−1
t=0 E[Et+1

bias ] ≤
2σ̃2

bias
m4 + 2

pout

(1−pout)
2

T

∑T−1
t=0 E[Et+1

var ].

Variance. Since the extrapolation only gives a constant overhead given Lemma 2

1
T

∑T−1
t=0 E

[∥∥Gt+1
BSB − Et[Gt+1

BSB|t]
∥∥2
2

]
≤ 28(1−pout)L

2
F γ2

B2

1
T

∑T−1
t=0 E[

∥∥Et[Gt+1
BSB|t]

∥∥2
2
] + ( 1

T + pout)
28
B1

(
σ2

in
m + σ2

out).

Then the variance is bounded by

1
T

∑T−1
t=0 E[Et+1

var ] ≤ 28(1−pout)L
2
F γ2

B2

1
T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
] + ( 1

Tpout
+ 1) 28pout

B1
(
σ2

in
m + σ2

out).

□

Theorem 4 [E-BSpiderBoost Convergence] Consider the (CSO) problem under the same assump-
tions as Theorem 3. Let step size γ ≤ 1/(13LF ). Then the output xs of E-BSpiderBoost (Algorithm 3)
satisfies: E[∥∇F (xs)∥22] ≤ ε2, for nonconvex F , if the inner batch size m = O(CeCgε

−0.5),
the hyperparameters of the outer loop of E-BSpiderBoost B1 = (L̃2

F /m + C2
F )ε

−2, B2 =√
B1, pout = 1/B2, and the number of iterations

T = Ω(LF (F (x0)− F ⋆)ε−2).
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Proof: Denote Gt+1 = Gt+1
E-BSB (9). Using descent lemma (Lemma 4) and bias-variance bounds of

E-BSpiderBoost (Lemma 8)

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] +

1
2T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
]

≤ 2(F (x0)−F⋆)
γT + LF γ

1
T

∑T−1
t=0 E[Et+1

var ] + 1
T

∑T−1
t=0 E[Et+1

bias ]

≤ 2(F (x0)−F⋆)
γT + LF γ

1
T

∑T−1
t=0 E[Et+1

var ] +
2σ̃2

bias
m4 + 2

pout

1
T

∑T−1
t=0 E[Et+1

var ]

≤ 2(F (x0)−F⋆)
γT +

2σ̃2
bias

m4 + 3
pout

1
T

∑T−1
t=0 E[Et+1

var ]

where the last inequality use γ ≤ 1
2LF

. Use the variance estimation of Gt+1 and choose B2pout = 1

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] +

1
2T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
]

≤ 2(F (x0)−F⋆)
γT +

2σ̃2
bias

m4 + 84L2
F γ

2 1
T

∑T−1
t=0 E[

∥∥Et[Gt+1|t]
∥∥2
2
] + ( 1

Tpout
+ 1) 84

B1
(
σ2

in
m + σ2

out).

Now we can let γ ≤ 1
13LF

such that 84L2
F γ

2 ≤ 1
2

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] ≤

2(F (x0)−F⋆)
γT +

2σ̃2
bias

m4 + ( 1
Tpout

+ 1) 84
B1

(
σ2

in
m + σ2

out). (19)

In order to make the right-hand side ε2, the inner batch size

m = Ω(σ̃2
biasε

−0.5),

and the outer batch size

B1 =
(σ2

in/m+σ2
out)

ε2 , B2 =
√

B1, pout =
1
B2

.

The step size γ is upper bounded by min{ 1
2LF

,
√
B2

6LF
, 1
13LF

}. As B2 ≥ 1, we can take γ = 1
13LF

. So
we need iteration T greater than

T ≥ 26LF (F (x0)−F⋆)
ε2 .

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee. □

E Stationary Point Convergence Proofs from Section 4 (FCCO)

In this section, we provide the convergence proofs for the FCCO problem. We start by analyzing a
variant of BSpiderBoost (Algorithm 3) for this case in Appendix E.1. In Appendix E.2, we present a
multi-level variance reduction approach (called NestedVR) that applies variance reduction in both
outer (over the random variable i) and inner (over the random variable η|i) loops. In Appendix E.3,
we analyze E-NestedVR. As in the case of CSO analyses, our proofs go via bounds on bias and
variance terms of these algorithms.

E.1 E-BSpiderBoost for FCCO problem

Theorem 8 Consider the (FCCO) problem. Suppose Assumptions 3, 4, 5, 6 holds true. Let step size
γ = O(1/LF ). Then the output of E-BSpiderBoost (Algorithm 3) satisfies: E[∥∇F (xs)∥22] ≤ ε2, for
nonconvex F , if the inner batch size m = Ω(max{CeCgε

−1/2, σ2
inn

−1ε−2}), the hyperparameters
of the outer loop of E-BSpiderBoost B1 = n,B2 =

√
n, pout = 1/B2, and the number of iterations

T = Ω
(
LF (F (x0)− F ⋆)ε−2

)
. The resulting sample complexity is

O
(
LF (F (x0)− F ⋆)max

{√
nCeCg

ε2.5 ,
σ2

in√
nε4

})
.

Remark 9 The sample complexity depends on the relation between n and ε

• When n = O(1), we have a complexity of O(ε−4). This happens because we did not apply
variance reduction for the inner loop.
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• When n = Θ(ε−2/3), E-BSpiderBoost has same performance as MSVR-V2 [19] of
O(nε−3) = O(ε−11/3).

• When n = Θ(ε−1.5), E-BSpiderBoost achieves a better sample complexity of O(ε−3.25)
than O(ε−4.5) from MSVR-V2 [19].

• When n = Θ(ε−2), we recover O(ε−3.5) sample complexity as in Theorem 4.

Proof: Denote Gt+1 = Gt+1
E-BSB (9). As we are using the finite-sum variant of SpiderBoost for the

outer loop of the CSO problem, we only need to change the (17) and (18) to reflect that the outer
variance is 0 now instead of σ2

out
B1

in the general CSO case. More concretely, we update (17) to

Et+1
var = E[

∥∥Gt+1 − E[Gt+1]
∥∥2
2
]

≤ (1− pout)E[
∥∥Gt+1

S − E[Gt+1
S ]

∥∥2
2
] + pout E[

∥∥Gt+1
L − E[Gt+1

L ]
∥∥2
2
]

= (1−pout)
B2

E[
∥∥Gt+1

E-BSGD −Gt
E-BSGD − E[Gt+1

E-BSGD −Gt
E-BSGD]

∥∥2
2
] + pout

B1
E[
∥∥Gt+1

E-BSGD − E[Gt+1
E-BSGD]

∥∥2
2
]

≤ 1−pout
B2

E[
∥∥Gt+1

E-BSGD −Gt
E-BSGD − E[Gt+1

E-BSGD −Gt
E-BSGD]

∥∥2
2
] + pout

B1

σ2
in

m .

(20)

and change (18) to

E1var = E[
∥∥G1 − E[G1]

∥∥2
2
] = E[

∥∥G1
L − E[G1

L]
∥∥2
2
] = 1

B1
E[
∥∥G1

E-BSGD − E[G1
E-BSGD]

∥∥2
2
] ≤ 1

B1

σ2
in

m .
(21)

Then our analysis only has to start from the updated version of (19)

1
T

∑T−1
t=0 E[∥∇F (xt)∥22] ≤

2(F (x0)−F⋆)
γT +

2σ̃2
bias

m4 + ( 1
Tpout

+ 1) 84
B1

σ2
in

m .

We would like all terms on the right-hand side to be bounded by ε2. From 2σ̃2
bias

m4 ≤ ε2 we know that

m = Ω(
σ̃
1/2
bias

ε1/2
).

From ( 1
Tpout

+ 1) 84
B1

σ2
in

m ≤ ε2, we know that

m = Ω(
σ2

in
nε2 ).

From 2(F (x0)−F⋆)
γT ≤ ε2, we can choose that

γ = O( 1
LF

), T = Ω
(

LF (F (x0)−F⋆)
ε2

)
.

Now the total sample complexity for E-BSpiderBoost for the FCCO problem becomes

B2mT = O
(
L2
F (F (x0)− F ⋆)max

{√
nσ̃

1/2
bias

ε2.5 ,
σ2

in√
nε4

})
.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee. □

E.2 Convergence of NestedVR

NestedVR Algorithm. We start by describing the NestedVR construction. We maintain states yt+1
i

and zt+1
i to approximate

yt+1
i ≈ Eη|i[gη(x

t)], zt+1
i ≈ Eη̃|i[∇gη̃(xt)].

In iteration t+ 1, if i is selected, then the state yt+1
i is updated as follows

yt+1
i =

{ 1
S1

∑
η∈Hi

gη(x
t) with prob. pin

yt
i +

1
S2

∑
η∈Hi

(gη(x
t)− gη(ϕ

t
i)) with prob. 1− pin,
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where ϕt
i is the last time node i is visited. If i is not selected, then

yt+1
i = yt

i .

In this case, yt+1
i was never used to compute ∇fi(yt+1

i ) because i is not selected at the time t+ 1.
We use the following quantities

ẑt+1
i = Eη̃|i[∇gη̃(xt)], zt+1

i = 1
m

∑
η̃∈H̃i

∇gη̃(xt). (22)

We use Gt+1
NVR as the actual updates,

Gt+1
NVR =

{ 1
B1

∑
i∈B1

(zt+1
i )⊤∇fi(yt+1

i ) with prob. pout

Gt
NVR + 1

B2

∑
i∈B2

((zt+1
i )⊤∇fi(yt+1

i )− (zt
i)

⊤∇fi(ỹt
i)) with prob. 1− pout.

We can also use the following quantity Ĝt+1
NVR as an auxiliary

Ĝt+1
NVR =

{
1
B1

∑
i∈B1

(ẑt+1
i )⊤∇fi(yt+1

i ) with prob. pout

Ĝt
NVR + 1

B2

∑
i∈B2

((ẑt+1
i )⊤∇fi(yt+1

i )− (ẑt
i)

⊤∇fi(ỹt
i)) with prob. 1− pout.

Here we use ỹt
i to represent an i.i.d. copy of yt

i where i is selected at time t.

The iterate xt+1 is therefore updated

xt+1 = xt − γGt+1
NVR.

Lemma 9 The error between Gt+1
NVR and Ĝt+1

NVR can be upper bounded as follows

1
T

∑T−1
t=0 E

[∥∥∥Gt+1
NVR − Ĝt+1

NVR

∥∥∥2
2

]
≤ 1

B1

C2
fσ

2
g

m + 4(1−pout)
B2mpout

1
T

∑T−1
t=0

(
E[
∥∥Gt+1

i −Gt
i

∥∥2
2
]
)
.

Proof: In this proof, we ignore the subscript in Gt+1
NVR and Ĝt+1

NVR, we bound the error between Gt+1

and associated Ĝt+1 where

Gt+1
i = ( 1

m

∑
η̃∈H̃i

∇gη̃(x))⊤∇fi(yt+1
i ),

Ĝt+1
i = (Eη̃|i[∇gη̃(x)])⊤∇fi(yt+1

i ).

Let’s only consider the expectation over the randomness of∇gη̃ ,

EHi

[∥∥∥Gt+1
i − Ĝt+1

i

∥∥∥2
2

]
≤ Eη̃|i

[∥∥∥( 1
m

∑
η̃∈H̃i

∇gη̃(x)− Eη̃|i[∇gη̃(x))]
∥∥∥2
2

]
E[
∥∥∇fi(yt+1

i )
∥∥2
2
]

≤ C2
f

m Eη̃|i

[∥∥∇gη̃(x)− Eη̃|i[∇gη̃(x))]
∥∥2
2

]
≤ C2

fσ
2
g

m .

Then we can bound the error as follows

E

[
EHi

[∥∥∥Gt+1 − Ĝt+1
∥∥∥2
2

]]
= pout

B1
E

[
EHi

[∥∥∥Gt+1
i − Ĝt+1

i

∥∥∥2
2

]]
+ (1− pout)

(∥∥∥Gt − Ĝt
∥∥∥2
2
+ 1

B2
E

[
EHi

[∥∥∥Gt+1
i −Gt

i − Ĝt+1
i − Ĝt

i

∥∥∥2
2

]])
≤ pout

B1

C2
fσ

2
g

m + (1− pout)
∥∥∥Gt − Ĝt

∥∥∥2
2

+ (1−pout)
B2m

(
E
[∥∥Gt+1

i −Gt
i

∥∥2
2

])
≤ pout

B1

C2
fσ

2
g

m + (1− pout)
∥∥∥Gt − Ĝt

∥∥∥2
2
+ (1−pout)

B2m

(
E[
∥∥Gt+1

i −Gt
i

∥∥2
2
]
)
.

Unroll the recursion gives

1
T

∑T−1
t=0 E

[∥∥∥Gt+1 − Ĝt+1
∥∥∥2
2

]
≤ 1

B1

C2
fσ

2
g

m + 4(1−pout)
B2mpout

1
T

∑T−1
t=0 E[

∥∥Gt+1
i −Gt

i

∥∥2
2
].

□
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Lemma 10 (Staleness) Define the staleness of iterates at time t as Ξt := 1
n

∑n
j=1∥xt − ϕt

j∥22 and
let Gt+1 be the gradient estimate, then

1
T

∑T−1
t=0 E[Ξt] ≤ 6n2

B2
2
γ2 1

T

∑T−1
t=0 E[

∥∥Gt+1
∥∥2
2
]. (23)

Proof: Like previously (Lemma 5), let E[·] denote the expectation conditioned on all previous
randomness until t− 1. It is clear that Ξ0 = 0, so we only consider t > 0. We upper bound E[Ξt] as
follows,

E[Ξt] = (1− pout)
1

n

n∑
j=1

E[
∥∥xt − ϕt

j

∥∥2
2
]︸ ︷︷ ︸

if time t takes B2

+pout
1

n

n∑
j=1

E[
∥∥xt − ϕt

j

∥∥2
2
]︸ ︷︷ ︸

if time t takes B1(ϕt
j=xt−1)

.

Then we can expand E[Ξt] as follows

E[Ξt] =
1− pout

n

n∑
j=1

E[
∥∥xt − ϕt

j

∥∥2
2
] +

pout

n

n∑
j=1

E[
∥∥xt − xt−1

∥∥2
2
]

≤ 1− pout

n

n∑
j=1

(
(1 + 1

β )Ei[
∥∥xt−1 − ϕt

j

∥∥2
2
] + (1 + β)

∥∥xt−1 − xt
∥∥2
2

)
+ poutγ

2 E[
∥∥Gt

∥∥2
2
]

≤ 1

n

n∑
j=1

(1 + 1
β )Ei[

∥∥xt−1 − ϕt
j

∥∥2
2
]+(1+β)γ2 E[

∥∥Gt
∥∥2
2
]

where we use Cauchy-Schwarz inequality with coefficient β > 0. By the definition of ϕt
j ,

E[Ξt] ≤ 1

n

n∑
j=1

(1+ 1
β )

(
n−B2

n

∥∥xt−1−ϕt−1
j

∥∥2
2
+

B2

n

∥∥xt−1 − xt−1
∥∥2
2

)
+(1+β)γ2 E[

∥∥Gt
∥∥2
2
]

= (1 + 1
β )(1−

B2

n )Ξt−1 + (1 + β)γ2 E[
∥∥Gt

∥∥2
2
].

By taking β = 2n/B2, we have that (1 + 1
β )(1−

B2

n ) ≤ 1− B2

2n and thus

E[Ξt] ≤ (1− B2

2n )Ξ
t−1 + (1 + 2n

B2
)γ2 E[

∥∥Gt
∥∥2
2
].

Note that E[Ξ0] = 0.

1
T

∑T−1
t=0 E[Ξt] ≤ 2n

B2
(1 + 2n

B2
)γ2 1

T

∑T−1
t=0 E[

∥∥Gt+1
∥∥2
2
]

≤ 6n2

B2
2
γ2 1

T

∑T−1
t=0 E[

∥∥Gt+1
∥∥2
2
].

□

The following lemma describes how the inner variable changes inside the variance.

Lemma 11 Denote Et+1
y := E

[∥∥yt+1
i − Eη|i[gη(x

t)]
∥∥2
2

]
to be the error from inner variance and

poutT ≤ 1. Then

1
T

∑T−1
t=0 Et+1

y ≤ (1−pin)C
2
g

pinS2

1
T

∑T−1
t=0 Ξt +

2σ2
g

S1
.

Meanwhile, E1y = E[
∥∥y1

i − Eη|i[gη(x
0)]
∥∥2
2
] =

σ2
g

S1
.

Proof:

Et+1
y ≤ pin

σ2
g

S1
+ (1− pin)Ei[Eη|i[

∥∥yt
i − Eη|i[gη(ϕ

t
i)]
∥∥2
2
]]

+ 1−pin
S2

Ei[Eη|i[
∥∥gη(xt)− gη(ϕ

t
i)
∥∥2
2
]]

≤ (1− pin)Ety +
(1−pin)C

2
g

S2
Ei[Eη|i[

∥∥xt − ϕt
i

∥∥2
2
]] + pin

σ2
g

S1
.
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As t = 0 always uses the large batch, E1y = E[
∥∥y1

i − Eη|i[gη(x
0)]
∥∥2
2
] =

σ2
g

S1
. Then

1
T

∑T−1
t=0 Et+1

y ≤ (1−pin)C
2
g

pinS2

1
T

∑T−1
t=0 Ei[Eη|i[∥xt − ϕt

i∥
2
2]] +

σ2
g

S1
+

E1
y

pinT

≤ (1−pin)C
2
g

pinS2

1
T

∑T−1
t=0 Ξt +

2σ2
g

S1
.

□

Lemma 12 The error Ei[Epin [Eη|i[
∥∥yt+1

i − ỹt
i

∥∥2
2
]]] satisfies

1
T

∑T−1
t=1 Ei[Epin [Eη|i[

∥∥yt+1
i − ỹt

i

∥∥2
2
]]] ≤ 4C2

gγ
2

T

∑T−1
t=0 E[

∥∥Gt+1
∥∥2
2
] +
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1
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y .

Note that when pin = 1 and S1 = S2 = m, we recover the following

1
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∥∥Gt+1
∥∥2
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Proof: For t ≥ 2, Ei[Epin [Eη|i[
∥∥yt+1

i − ỹt
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∥∥2
2
]]] can be upper bounded as follows
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i
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2
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[∥∥∥yt
i − yt−1

i + 1
S2

∑
η∈Hi

(gη(x
t)− gη(ϕ

t
i))− (gη(x

t−1)− gη(ϕ
t−1
i ))

∥∥∥2
2

]]
≤ pinC

2
g

∥∥xt − xt−1
∥∥2
2
+ 1−pin

S2
Ei
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2
g
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)
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(
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)
.

For t = 1, we choose ỹ1
i = y1

i

Ei[Epin [Eη|i[
∥∥y2

i − ỹ1
i

∥∥2
2
]]] = pin Ei
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∥∥∥2
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2
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∥∥2
2
.

Then for summing up t = 1 to T − 1∑T−1
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∑T−1
t=2 Et−1

y
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Finally, the error has the following upper bound

1
T
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t=1 Ei[Epin [Eη|i[

∥∥yt+1
i − ỹt

i

∥∥2
2
]]]
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2
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∥∥2
2
] +
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2
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1
T
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T
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□
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Lemma 13 (Bias and Variance of NestedVR) If the step size γ satisfies,

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

then the variance and bias of NestedVR are

1
T

∑T−1
t=0 Et+1

var ≤ 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2
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(
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B1

+ (1−pin)(1−pout)
B2

)
L̃2

F

S1
+ (1−pout)

T
8L̃2

F

B1S1

1
T

∑T−1
t=0 E

t+1
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12(1−pin)
pinS2

n2

B2
2

L2
F γ2

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2
+

4L̃2
F

S1

+
(

12(1−pin)
pinS2

n2

B2
2
L2
F γ

2 + 2(1−pout)
2
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)
1
T

∑T−1
t=0 Et+1

var .

Proof: Notations. Let us define the following terms,

Gt+1
i := (zt+1

i )⊤∇fi(yt+1
i ), G̃t

i := (zt
i)

⊤∇fi(ỹt
i).

Note that the G̃t computed at time t+ 1 has same expectation as Gt

Et+1[G̃t|t] = Et[Gt|t− 1]. (24)

Computing the bias. First consider the two cases in the outer loop

Et+1
bias =

∥∥∇F (xt)− Et+1[Gt+1|t]
∥∥2
2

≤ 2
∥∥∇F (xt)− Et+1[Gt+1

i |t]
∥∥2
2︸ ︷︷ ︸

At+1
1

+2
∥∥Et+1[Gt+1

i |t]− Et+1[Gt+1|t]
∥∥2
2︸ ︷︷ ︸

At+1
2

.

We expand At+1
2 as follows

At+1
2 =

∥∥Et+1[Gt+1
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∥∥2
2

=
∥∥∥Et+1[Gt+1
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i|t])
∥∥∥2
2
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2
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i|t]
∥∥∥2
2

= (1− pout)
2
∥∥Gt − Et[Gt

i|t− 1]
∥∥2
2

where we use (24) in the last equality. Now we take expectation with respect to randomness at t such
that Gt is a random variable, then

At+1
2 = (1− pout)

2 Et
[∥∥Gt − Et[Gt

i|t− 1]
∥∥2
2
|t− 1

]
= (1− pout)

2
(∥∥Et[Gt|t− 1]− Et[Gt

i|t− 1]
∥∥2
2
+ Etvar

)
= (1− pout)

2
(
At

2 + Etvar

)
while at initialization we always use large batch

A1
2 =

∥∥E1[G1
i ]− E1[G1]

∥∥2
2
=
∥∥E1[G1

i ]− E1[G1
i ]
∥∥2
2
= 0.

Therefore, when we average over time t

1
T

∑T−1
t=0 At+1

2 ≤ (1−pout)
2

pout

1
T

∑T−1
t=0 Et+1

var . (25)

On the other hand, let us consider the upper bound on At+1
1

At+1
1 ≤ C2

gL
2
f E[
∥∥yt+1

i − Eη|i[gη(x
t)]
∥∥2
2
] = C2

gL
2
fEt+1

y .

From Lemma 11 we know that
1
T

∑T−1
t=0 At+1

1 ≤ C2
gL

2
f

(
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2
g

pinS2

1
T

∑T−1
t=0 Ξt +
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g
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)
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2
F
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1
T
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F
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.

36



From Lemma 10 we know that
1
T

∑T−1
t=0 At+1

1 ≤ (1−pin)L
2
F

pinS2

(
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2
γ2 1

T
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∥∥2
2
]
)
+
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F
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2
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T

∑T−1
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∥∥2
2
+

2L̃2
F
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pinS2
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2
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F γ2

T
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var .

Therefore, the bias has the following bound
1
T

∑T−1
t=0 E

t+1
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12(1−pin)
pinS2
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2

L2
F γ2

T
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∥∥E[Gt+1]
∥∥2
2
+

4L̃2
F
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+
(
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B2
2
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F γ

2 + 2(1−pout)
2
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)
1
T
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t=0 Et+1

var .
(26)

Note that when pin = 1 and S1 = S2 = m, then this bias recovers BSpiderBoost in (16)
1
T

∑T−1
t=0 E

t+1
bias ≤

4L̃2
F

m + 2(1−pout)
2
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1
T

∑T−1
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var .

Computing the variance. Let us decompose the variance into 3 parts:

Et+1
var = E

[∥∥Gt+1 − E[Gt+1]
∥∥2
2

]
= E

[∥∥∥Gt+1 ± Ĝt+1 ± Eη|i[Ĝ
t+1]− Ei[Eη|i[Ĝ

t+1]]
∥∥∥2
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]
= E
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∥∥2
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∥∥2
2
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where Et+1
var,out and Et+1

var,in are the variance of outer loop and inner loop.

Inner Variance. For t ≥ 1, we expand the inner variance
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[∥∥∥ 1
B2

∑
i(G

t+1
i − G̃t

i)− Eη|i[G
t+1
i − G̃t

i]
∥∥∥2
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We bound the outer variance as
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For t = 0, as we only use large and small batch in the
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i )])
∥∥∥2
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Therefore, average over time t = 0, . . . T − 1 gives
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Let us first apply Lemma 12
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Then we apply Lemma 11 on the bound of 1
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From Lemma 10, we plug in the upper bound of 1
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Finally, we add the upper bound on with E1var,in with (29)
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Outer Variance. Now we consider the outer variance for t ≥ 1
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2

]
≤ (1−pout)

2

B2
Ei

[
Eη|i

[∥∥∥Gt+1
i − G̃t

i

∥∥∥2
2

]]
.

Compared to (27) we know that the upper bound of is smaller than that of Et+1
var,in. Besides, whereas

E1var,out = 0 as we use large batch at t = 0. Therefore, the upper bound of Et+1
var is upper bounded by

2*(30).

Variance of∇gη̃ . From Lemma 9, we know that

1
T

∑T−1
t=0 E[Et+1

∇g ] ≤ 1
B1

C2
fσ

2
g

m + 4(1−pout)
B2mpout

1
T

∑T−1
t=0

(
E

[∥∥∥Gt+1
i − G̃t

i

∥∥∥2
2

])
≤ 1

B1

C2
fσ

2
g

m + 1
mE

t+1
var

Finally, we use E[
∥∥Gt+1

∥∥2
2
] =

∥∥E[Gt+1]
∥∥2
2
+ Et+1

var .

1
T

∑T−1
t=0 Et+1

var ≤ 16
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

+ 16
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F

T

∑T−1
t=0 Et+1

var

+ 48
(

pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2

F

S1
+ (1−pout)

T
8L̃2

F

B1S1
.

By taking step size γ to satisfy

γ2L2
F max

{
pout
B1

(1−pin)
pinS2

18n2

B2
2
, 1−pout

B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

which can be simplified to

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6 .

Then the coefficient of 1
T

∑T−1
t=0 Et+1

var is bounded by 1
2

16
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F ≤ 1
2 .

The the variance has the following bound

1
T

∑T−1
t=0 Et+1

var ≤ 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

+ 96
(

pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2

F

S1
+ (1−pout)

T
8L̃2

F

B1S1
.

□

Theorem 10 Consider the (FCCO) problem. Suppose Assumptions 3, 4, 5 holds true. Let step
size γ = O( 1√

nLF
). Then for NestedVR, xs picked uniformly at random among {xt}T−1

t=0

satisfies: E[∥∇F (xs)∥22] ≤ ε2, for nonconvex F , if the hyperparameters of the inner loop
S1 = O(L̃2

F ε
−2), S2 = O(L̃F ε

−1), pin = O(1/S2), the hyperparameters of the outer loop
B1 = n,B2 =

√
n, pout = 1/B2, and the number of iterations

T = Ω
(√

nLF (F (x0)−F⋆)
ε2

)
.

The resulting sample complexity is

O
(

nLF L̃F (F (x0)−F⋆)
ε3

)
.

In fact, it reaches this sample complexity for all pinpout√
1−pin

≲ ε.
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Proof: Using descent lemma (Lemma 4) and bias-variance bounds of NestedVR (Lemma 13)

1
T

∑T−1
t=0 ∥∇F (xt)∥22 +

1
2T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

≤ 2(F (x0)−F⋆)
γT + LF γ

T

∑T−1
t=0 Et+1

var + 1
T

∑T−1
t=0 E

t+1
bias

≤ 2(F (x0)−F⋆)
γT︸ ︷︷ ︸
T0

+
4L̃2

F

S1︸︷︷︸
T1

+ 12(1−pin)
pinS2

n2

B2
2

L2
F γ2

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2︸ ︷︷ ︸

T2

+
(

12(1−pin)
pinS2

n2

B2
2
L2
F γ

2 + 2(1−pout)
2

pout
+ γLF

)
1
T

∑T−1
t=0 Et+1

var︸ ︷︷ ︸
T3

.

Compute T0. In order to let T0 ≤ ε2, we require that

γT ≥ ε−2. (31)

Compute T1. In order to let T1 to be smaller than ε2, we need

S1 =
4L̃2

F

ε2 .

Compute T2. In order to let the coefficient of 1
T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

in T2 to be less than 1
4 , i.e.

12(1−pin)
pinS2

n2

B2
2
L2
F γ

2 ≤ 1
4 , (32)

which requires γ
γ ≤ B2

√
pinS2

7LFn
√
1−pin

= poutpinL̃F

7εLF
√
1−pin

. (33)

Compute T3. Let us now focus on T3 and notice that the middle term 2(1−pout)
2

pout

2(1−pout)
2

pout

1
T

∑T−1
t=0 Et+1

var .

Using Lemma 13 we have that

2(1−pout)
2

pout

1
T

∑T−1
t=0 Et+1

var

≤ 32 2(1−pout)
2

pout

((
pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F
1
T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2︸ ︷︷ ︸

T3,1

+ 96 2(1−pout)
2

pout

(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2

F

S1︸ ︷︷ ︸
T3,2

+ 2(1−pout)
2

pout

(1−pout)
T

8L̃2
F

B1S1︸ ︷︷ ︸
T3,3

.

• Compute T3,3: As we already know that S1 = O(ε−2) and T ≥ 1 and B1pout ≥ 1. This
imposes no more constraints, i.e.

S1 = O

(
L̃2
F

ε2

)
.

• Compute T3,2: As S1 = O(ε−2) and B1 = n and B2 = B1pout, then it requires

(1−pin)(1−pout)
3

p2
out

≤ n.

• Compute T3,1: In order to satisfy the following

32 2(1−pout)
2

pout

((
pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F ≤ 1
12

we need to enforce

γ ≤ pinpoutL̃F

εLF (1− pin)1/2(1− pout)3/2
. (34)
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Now we go back to T3 and compare the other two coefficients

12(1−pin)
pinS2

n2

B2
2
L2
F γ

2 + 2(1−pout)
2

pout
+ γLF .

As γLF ≤ 1
2 ≲ 2(1−pout)

2

pout
we can safely ignore γLF . On the other hand, from (32) we know that the

first term is also have
12(1−pin)

pinS2

n2

B2
2
L2
F γ

2 ≤ 1
4 ≲ 2(1−pout)

2

pout
.

Constraints from the Bias-Variance Lemma (Lemma 13). By setting B1 = n and S1 = O( L̃
2
F

ε2 ),
this constraint translates to

γ2L2
F max

{
(1−pin)

p2
in

ε2

B2
, 1−pout

B2

(1−pin)ε
2

p2
in

1
p2

out
, (1−pout)

B2

}
≲ 1

which is weaker than (33).

Summary on the Limit on γ. Combine (33) and (34) and γ ≤ 1
2LF

, we have a final limit on step
size γ

γ ≲ min
{

poutpinL̃F

εLF
√
1−pin

, 1
LF

}
(35)

Then the total sample complexity of NestedVR can be computed as

(# of iters T )× (Avg. outer batch size B2 = B1pout)× (Avg. inner batch size S2 = S1pin).

This sample complexity has the following requirement

B2S2T =
B2S2(Tγ)

γ

(31)
≥ B2S2

ε2γ
=

nε−2

ε2
pinpout

γ

(35)
≳ nε−3.

The lower bound nε−3 is reached when in (35) we have

poutpinL̃F

εLF
√
1−pin

≲ 1
LF

.

That is, poutpin√
1−pin

≲ ε.

In particular, we can choose the following hyperparameters to reach O(nε−3) sample complexity

B1 = n, B2 =
√
n, pout =

1√
n
, S1 = O(L̃2

F ε
−2), S2 = O(L̃F ε

−1), pin = O(L̃−1
F ε)

The step size γ can be chosen as

γ ≲ 1√
nLF

.

and the iteration complexity

T = Ω
(√

nLF (F (x0)−F⋆)
ε2

)
.

Putting these together gives the claimed sample complexity bound. By picking xs uniformly at
random among {xt}T−1

t=0 , we get the desired guarantee. □

E.3 Convergence of E-NestedVR

In this section, we analyze the sample complexity of Algorithm 1 (E-NestedVR) for the FCCO
problem with

Gt+1
E-NVR =


1
B1

∑
i(z

t+1
i )⊤L(2)

Dt+1
y,i

∇fi(0) with prob. pout

Gt
E-NVR + 1

B2

∑
i

(
(zt+1

i )⊤L(2)

Dt+1
y,i

∇fi(0)− (zt
i)

⊤L(2)

Dt
y,i
∇fi(0)

)
with prob. 1− pout.

(36)
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Lemma 14 (Bias and Variance of E-NestedVR) If the step size γ satisfies

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

then the variance and bias of E-NestedVR are

1
T

∑T−1
t=0 Et+1

var ≤ 14 · 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

+ 14 · 96
(

pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2

F

S1
+ (1−pout)

T
8L̃2

F

B1S1
.

1
T

∑T−1
t=0 E

t+1
bias ≤

(1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 1

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2
+

2(1−pin)
2L̃2

F

S1
+

C2
e

S4
2

+
(

(1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 + (1−pout)

2

pout

)
1
T

∑T−1
t=0 Et+1

var .

Proof: Note that this proof is very similar to NestedVR so we highlight the differences. Let
Gt+1 = Gt+1

E-NVR (36) be the E-NestedVR update and define

Gt+1
i := (zt+1

i )⊤L(2)

Dt+1
y,i

∇fi(0)

We expand the bias by inserting Ei,pin,η|i[G
t+1
i ]

Et+1
bias =

∥∥∇F (xt+1)− E[Gt+1]
∥∥2
2

≤ 2
∥∥∇F (xt+1)− Ei,pin,η,η̃|i[G

t+1
i ]

∥∥2
2︸ ︷︷ ︸

At+1
1

+2
∥∥Ei,pin,η,η̃|i[G

t+1
i ]− E[Gt+1]

∥∥2
2︸ ︷︷ ︸

At+1
2

.

Consider At+1
1 . The term At+1

1 captures the difference between full gradient and extrapolated
gradient

At+1
1 =

∥∥∥∥Ei

[
(Eη̃|i[∇gη̃(xt)])⊤∇fi(E[gη(xt)])− Epin,η|i

[
(Eη̃|i[∇gη̃(xt)])⊤L(2)

Dt+1
y,i

∇fi(0)
]]∥∥∥∥2

2

≤ C2
g Ei

[∥∥∥∥∇fi(Eη|i[gη(x
t)])− Epin,η|i

[
L(2)

Dt+1
y,i

∇fi(0)
]∥∥∥∥2

2

]
≤ 2C2

g Ei

[∥∥∇fi(Eη|i[gη(x
t)])− Epin [∇fi(Eη|i[y

t+1
i ])]

∥∥2
2

]
︸ ︷︷ ︸

=:At+1
1,1

+ 2C2
g Ei

[∥∥∥∥Epin [∇fi(Eη|i[y
t+1
i ])]− Epin,η|i

[
L(2)

Dt+1
y,i

∇fi(0)
]∥∥∥∥2

2

]
︸ ︷︷ ︸

=:At+1
1,2

.

The first term At+1
1,1 can be upper bounded through smoothness of fξ, for t ≥ 1

At+1
1,1 = Ei

[∥∥∇fi(Eη|i[gη(x
t)])− pin∇fi(Eη|i[gη(x

t)])− (1− pin)∇fi(yt
i + Eη|i[gη(x

t)− gη(ϕ
t
i)])
∥∥2
2

]
= (1− pin)

2 Ei

[∥∥∇fi(E[gη(xt)])−∇fi(yt
i + Eη|i[gη(x

t)− gη(ϕ
t
i)])
∥∥2
2

]
≤ (1− pin)

2L2
f Ei

[∥∥Eη|i[gη(x
t)]− (yt

i + Eη|i[gη(x
t)− gη(ϕ

t
i)])
∥∥2
2

]
= (1− pin)

2L2
f Ei[

∥∥yt
i − Eη|i[gη(ϕ

t
i)]
∥∥2
2
]

= (1− pin)
2L2

fEty.

For t = 0, A1
1,1 = 0, then

1
T

∑T−1
t=0 At+1

1,1 ≤ (1− pin)
2L2

fC
2
g

1
T

∑T−1
t=0 Et+1

y . (37)
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On the other hand, with Lemma 6

At+1
1,2 ≤ pin Ei

[∥∥∥∥∇fi(Eη|i[gη(x
t)])− Eη|i

[
L(2)

Dt+1
y,S1,i

∇fi(0)
]∥∥∥∥2

2

]

+ (1− pin)Ei

[∥∥∥∇fi(yt
i + Eη|i[gη(x

t)− gη(ϕ
t
i)])− Eη|i

[
L(2)
Dy,S2,i

∇fi(0)
]∥∥∥2

2

]
≤ pinC

2
e

S4
1

+
(1−pin)C

2
e

S4
2

≤ C2
e

S4
2

where Dt+1
y,S1,i

is the distribution of 1
S1

∑
η∈S1

gη(x
t) and Dt+1

y,S2,i
is the distribution of

yt
i +

1
S2

∑
η∈S2

(gη(x
t)− E[gη(ϕt

i)]).

Thus the At+1
1 has the following upper bound

1
T

∑T−1
t=0 At+1

1 ≤ (1− pin)
2L2

fC
2
g

1
T

∑T−1
t=0 Et+1

y +
C2

e

S4
2
. (38)

Consider At+1
2 . Let us expand At+1

2 through recursion

At+1
2 =

∥∥Ei,pin,η,η̃|i[G
t+1
i ]− E[Gt+1]

∥∥2
2

= (1− pout)
2
∥∥∥Gt − Ei[Eη,η̃|i[G̃

t
i]]
∥∥∥2
2

= (1− pout)
2

(∥∥∥E[Gt]− Ei[Eη,η̃|i[G̃
t
i]]
∥∥∥2
2
+ Etvar

)
= (1− pout)

2
(
At

2 + Etvar

)
.

For t = 0, we have that A1
2 = 0, then average over time gives

1
T

∑T−1
t=0 At+1

2 ≤ (1−pout)
2

pout

1
T

∑T−1
t=0 Et+1

var .

Therefore, the bias has the following bound

1
T

∑T−1
t=0 E

t+1
bias ≤ (1− pin)

2L2
fC

2
g

1
T

∑T−1
t=0 Et+1

y +
C2

e

S4
2
+ (1−pout)

2

pout

1
T

∑T−1
t=0 Et+1

var .

Using Lemma 11

1
T

∑T−1
t=0 E

t+1
bias ≤ (1− pin)

2L2
fC

2
g

(
(1−pin)C

2
g

pinS2

1
T

∑T−1
t=0 Ξt +

2σ2
g

S1

)
+

C2
e

S4
2
+ (1−pout)

2

pout

1
T

∑T−1
t=0 Et+1

var

≤ (1−pin)
3L̃2

F

pinS2

1
T

∑T−1
t=0 Ξt +

2(1−pin)
2L̃2

F

S1
+

C2
e

S4
2
+ (1−pout)

2

pout

1
T

∑T−1
t=0 Et+1

var .

Using Lemma 10 we have that

1
T

∑T−1
t=0 E

t+1
bias ≤

(1−pin)
3L̃2

F

pinS2

(
6n2

B2
2
γ2 1

T

∑T−1
t=0 E[

∥∥Gt+1]
∥∥2
2

)
+

2(1−pin)
2L̃2

F

S1
+

C2
e

S4
2
+ (1−pout)

2

pout

1
T

∑T−1
t=0 Et+1

var

≤ (1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 1

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2
+

2(1−pin)
2L̃2

F

S1
+

C2
e

S4
2

+
(

(1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 + (1−pout)

2

pout

)
1
T

∑T−1
t=0 Et+1

var .

Variance. Combine the variance of NestedVR in Lemma 13 and Lemma 2 gives

1
T

∑T−1
t=0 Et+1

var ≤ 14 · 32
((

pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

+ 14 · 96
(

pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2

F

S1
+ (1−pout)

T
8L̃2

F

B1S1
.

□
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Theorem 5 [E-NestedVR Convergence] Consider the (FCCO) problem. Under the same assump-
tions as Theorem 3.

• If n = O(ε−2/3), then we choose the hyperaparameters of E-NestedVR (Algorithm 1) as
B1 = B2 = n, pout = 1, S1 = L̃2

F ε
−2, S2 = L̃F ε

−1, pin = L̃−1
F ε, γ = O( 1

LF
).

• If n = Ω(ε−2/3), then we choose the hyperaparameters of E-NestedVR as B1 = n,B2 =
√
n, pout = 1/

√
n, S1 = S2 = max

{
CeCgε

−1/2, L̃2
F /(nε

2)
}
, pin = 1, γ = O( 1

LF
).

Then the output xs of E-NestedVR satisfies: E[∥∇F (xs)∥22] ≤ ε2, for nonconvex F with iterations

T = Ω
(
LF (F (x0)− F ⋆)ε−2

)
.

Proof: Denote. Gt+1 = Gt+1
E-NVR (36). Using descent lemma (Lemma 3) and bias-variance of

E-NestedVR (Lemma 14)

1
T

∑T−1
t=0 ∥∇F (xt)∥22 +

1
2T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

≤ 2(F (x0)−F⋆)
γT + LF γ

T

∑T−1
t=0 Et+1

var + 1
T

∑T−1
t=0 E

t+1
bias

≤ 2(F (x0)−F⋆)
γT +

(1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 1

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2
+

2(1−pin)
2L̃2

F

S1
+

C2
e

S4
2

+
(

(1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 + (1−pout)

2

pout
+ LF γ

)
1
T

∑T−1
t=0 Et+1

var .

As we would like the right-hand side to be bounded by either 1
T

∑T−1
t=0

∥∥E[Gt+1]]
∥∥2
2

or ε2.

• Bound on 2(F (x0)−F⋆)
γT with ε2 , i.e.

γT ≳ (F (x0)− F ⋆)ε−2 (39)

• Coefficient of 1
T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

is bounded by 1
4 , i.e.

(1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 ≤ 1

4

which can be achieved by choosing the following step size

γ ≤ poutpin
√
S1

5L̃F (1−pin)3/2
. (40)

• Bound on 2(1−pin)
2L̃2

F

S1
with ε2

2(1−pin)
2L̃2

F

S1
≤ ε2. (41)

• Bound C2
e

S4
2

with ε2. This leads to

S2 ≥
√

Ce

ε . (42)

• Bound on the variance. First notice from (40) and γ ≤ 1
2LF

,

(1−pin)
3L̃2

F

pinS2

6n2

B2
2
γ2 ≤ 1

4 ≲ (1−pout)
2

pout

LF γ ≤ 1
2 ≲ (1−pout)

2

pout
.

Therefore, we only need to consider the upper bound on

(1−pout)
2

pout

1
T

∑T−1
t=0 Et+1

var

≤ 14 · 32 (1−pout)
2

pout

((
pout
B1

+ 1−pout
B2

)
(1−pin)
pinS2

18n2

B2
2

+ (1−pout)
B2

)
γ2L2

F

T

∑T−1
t=0

∥∥E[Gt+1]
∥∥2
2

+ 14 · 96 (1−pout)
2

pout

(
pout
B1

+ (1−pin)(1−pout)
B2

)
L̃2

F

S1
+ (1−pout)

3

poutT
8L̃2

F

B1S1
.
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We impose the constraints for each term

(1−pout)
2

pout

pout
B1

(1−pin)
pinS2

18n2

B2
2
L2
F γ

2 ≲ 1

(1−pout)
2

pout

1−pout
B2

(1−pin)
pinS2

18n2

B2
2
L2
F γ

2 ≲ 1

(1−pout)
2

pout

1−pout
B2

L2
F γ

2 ≲ 1

(1−pout)
2

pout

pout
B1

L̃2
F

S1
≲ ε2

(1−pout)
2

pout

(1−pin)(1−pout)
B2

L̃2
F

S1
≲ ε2

(1−pout)
3

poutT
8L̃2

F

B1S1
≲ ε2.

These can be simplified as

γ ≲ pinpout
√
B1

√
S1

(1−pout)
√
1−pin

1
LF

(43)

γ ≲ pinp
2
out
√
B1

√
S1

(1−pout)3/2
√
1−pin

1
LF

(44)

γ ≲
√
B1

(1−pout)3/2
1

LF
(45)

B1S1 ≳ (1−pout)
2L̃2

F

ε2 (46)

B1S1 ≳ (1−pout)
3(1−pin)L̃

2
F

ε2p2
out

(47)

B1S1 ≳ (1−pout)
3L̃2

F

Tε2pout
. (48)

• Constraints from Lemma 14

γ2L2
F max

{
(1−pin)
pinS2

18
B2

, 1−pout
B2

(1−pin)
pinS2

18n2

B2
2
, (1−pout)

B2

}
≤ 1

16 ·
1
6

which can be translated to

γ ≲ pin
√
S1

√
B2

LF
√
1−pin

(49)

γ ≲ pinpout
√
S1

√
B2

LF
√
1−pin

√
1−pout

(50)

γ ≲
√
B2

LF
√
1−pout

(51)

• Constraint from sufficient decrease lemma:

γ ≤ 1
2LF

. (52)

We simplify the conditions noticing that 1) (48) is weaker than (46); 2) (45) and (51) are weaker than
(52). Combine all the constraints on γ, i.e. (43), (44), (49), (50), (52)

γ ≲ 1
LF

min
{
min

{
1, pout√

1−pout

}
pinpout

√
B1

√
S1

(1−pout)
√
1−pin

1
LF

,min
{
1, pout√

1−pout

}
pin

√
S1

√
B2√

1−pin
, 1, poutpin

√
S1

5L̃F (1−pin)3/2

}
.

This can be simplified as an upper bound

γ ≲ 1
LF

min
{

pinpout
√
S1√

1−pin
, pinpout

√
S1

√
B1√

1−pout
,
pinp

2
out
√
S1

√
B1√

1−pin
√
1−pout

, 1
}
.

Now we consider two sets of hyperparameters depending on the size of n Case 1: For n = O(ε−2/3),
we choose the following set of hyperparameters

B1 = B2 = n, pout = 1, S1 = L̃2
F ε

−2, S2 = L̃F ε
−1, pin = L̃−1

F ε.

Then we have γ ≲ 1
LF

min{ pin
√
S1√

1−pin
, 1} = 1

LF
, we have the total sample complexity of

B2S2T = B2S2Tγ
γ

(39)
= F (x0)−F⋆

ε2
B2S2

γ = (F (x0)−F⋆)nL̃FLF

ε3
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Figure 4: Performance of BSGD vs. E-BSGD on the few-shot sinsuoid regression task.

Case 2: For n = Ω(ε−2/3), we choose the following set of hyperparameters

B1 = n, B2 =
√
n, pout =

1√
n
.

In this case, (46) is stronger than (47) which requires S1 ≳ L̃2
F

nε2

S1 = S2 = max
{
σ̃
1/2
bias ε

−1/2,
σ2

in
nε2

}
, pin = 1

Then we have γ ≲ 1
LF

min{pout
√
n
√
S1√

1−pout
, 1} = 1

LF
, we have the total sample complexity of

B2S2T = B2S2Tγ
γ

(39)
= F (x0)−F⋆

ε2
B2S2

γ = (F (x0)− F ⋆)max

{√
nσ̃

1/2
bias

ε2.5 ,
σ2

in√
nε4

}
.

By picking xs uniformly at random among {xt}T−1
t=0 , we get the desired guarantee. □

F Missing Details from Section 5

F.1 Application of First-order MAML

Over the past few years, the MAML framework [11] has become quite popular for few-shot supervised
learning and meta reinforcement learning tasks. The first-order Model-Agnostic Meta-Learning
(MAML) can be formulated mathematically as follows:

min
x

Ei∼p,Di
query

ℓi

(
EDi

supp
(x− α∇ℓi(x,Di

supp)),Di
query

)
where α is the step size, Di

supp and Di
query are meta-training and meta-testing data respectively and

ℓi being the loss function of task i. Stated in the CSO framework, fξ(x) := ℓi(x,Di
query) and

gη(x, ξ) := x− α∇ℓi(x,Di
supp) where ξ = (i,Di

query) and η = Di
supp.

In this context, lots of popular choices for fξ are smooth. For illustration purposes, we now discuss a
widely used sine-wave few-shot regression task as appearing from the work of Finn et al. [11], where
the goal is to do a few-shot learning of a sine wave, A sin(t− ϕ), using a neural network Φx(t) with
smooth activations, where A and ϕ represent the unknown amplitude and phase, and x denotes the
model weight. Each task i is characterized by (Ai, ϕi,Di

query). In the first-order MAML training
process, we randomly select a task i, and draw training data η = Di

supp. Define the loss function

for a given dataset D as ℓi(Φx;D) = 1
2 Et∼D

∥∥Ai sin(t− ϕi)− Φx(t)
∥∥2
2
. We then establish the

outer function fi(x) = ℓi(Φx;Di
query) and inner function gη(x) = x− α∇xℓi(Φx;Di

supp). As fi is
smooth, our results are applicable.

In Figure 4, we show the results of BSGD and E-BSGD applied to this problem. In this experiment,
the amplitude A is drawn from a uniform distribution U(0.1, 5) and the phase ϕ is drawn from
U(0, π). Both Dsupp and Dquery are independently drawn from U(−5, 5). The step size is set to
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α = 0.01. The batch size is fixed to 10. The performances of BSGD and E-BSGD are very close.
This is not surprising because finetuning step size α is chosen to be small which significantly reduces
the variance of gη, making the bias of meta gradient to be very small (O(α2)). Therefore, we
observe similar performance of BSGD and E-BSGD. Similar trend also holds for BSpiderBoost and
NestedVR compared to their extrapolated variants.

F.2 Application of Deep Average Precision Maximization

The areas under precision-recall curve (AUPRC) has an unbiased point estimator that maximizes
average precision (AP) [26, 34]. Let S+ and S− be the set of positive and negative samples and
S = S− ∪ S+. Let hw(·) be a classifier parameterized with w and ℓ be a surrogate function, such as
logistic or sigmoid. A smooth surrogate objective for maximizing average precision can be formulated
as [33]:

F (w) = − 1

|S+|
∑

xi∈S+

∑
x∈S+

ℓ(hw(x)− hw(xi))∑
x∈S ℓ(hw(x)− hw(xi))

This problem can be seen as a conditional stochastic optimization problem with gi(w) =
[
∑

x∈S+
ℓ(hw(x) − hw(xi)),

∑
x∈S ℓ(hw(x) − hw(xi))] and fi : R × R\{0} → R is defined

as fi(y) = − [y]1
[y]2

where [y]k denotes the kth coordinate of a vector y ∈ R × R\{0}. During the
stochastic optimization of this objective, we draw uniformly at random ξ := xi (drawn from the set
S+) as a positive sample and η|ξ = [Fx1 ,Fx2 ] where set x1 is drawn uniformly at random from S+
and x2 is drawn uniformly at random from S and functional Fx(w) := ℓ(hw(x)− hw(xi)). Note
that fi ∈ C∞ is smooth with gradient

∇fi(y) =

[
− 1

[y]2
[y]1

([y]2)2

]
.

Therefore, our results from Sections 3 and 4 again apply.

F.3 Necessity of Additional Smoothness Conditions

Throughout the paper, we assume bounded moments (Assumption 1) and a smoothness condition
(Assumption 2) to derive our extrapolation technique. However, it is worth noting that the technique
itself does not explicitly depend on higher-order derivatives. Our theoretical framework does not
address the behavior of extrapolation in the absence of these smoothness constraints. In this section,
we investigate the application of extrapolation to two non-smooth functions:

• ReLU function given by q(x) = max{x, 0};
• Perturbed quadratics represented as q(x) = x2/2 + TriangleWave(x) + 1. The function

TriangleWave(x) has a period of 2 and spans the range [-1,1], defined as:

TriangleWave(x) = 2

∣∣∣∣2(x

2
−
⌊
x

2
+

1

2

⌋)∣∣∣∣− 1

Visual representations of these functions can be found in Figure 5c. We set s = 0 and consider
a random variable δ ∼ N (10, 100) with m = 1. We then apply first-, second-, and third-order
extrapolation. The outcomes are depicted in Figure 5. Remarkably, both the ReLU and the perturbed
quadratic functions do not conform to the differentiability assumptions inherent to our stochastic
extrapolation schemes. Nonetheless, as indicated by Figure 5a and Figure 5b, our proposed second-
and third-order extrapolation techniques yield a superior approximation of q(E[δ]).
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Figure 5: (a) Fig. 5a: Error in estimating q(s+ E[δ]) for our proposed first-, second-, and third-order
extrapolation schemes applied to ReLU q(x) = max{x, 0}, s = 0, δ ∼ N (10, 100), m = 1. (b) Fig
5b: Error in estimating q(s + E[δ]) for our proposed first-, second-, and third-order extrapolation
schemes applied to a perturbed quadratic q(x) = x2/2+TriangleWave(x)+1, s = 0, δ ∼ N (10, 100),
m = 1. The TriangleWave(x) has a period of 2 and spans the range [-1,1], i.e. 2|2

(
x
2 − ⌊

x
2 + 1

2⌋
)
|−1.

(c) Fig 5c: The ReLU and perturbed quadratic used in the Fig. 5a and 5b along with quadratic curves.
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