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Abstract

Multiple hypothesis testing, a situation when we wish to consider many hypotheses, is a core prob-
lem in statistical inference that arises in almost every scientific field. In this setting, controlling the false
discovery rate (FDR), which is the expected proportion of type I error, is an important challenge for
making meaningful inferences. In this paper, we consider the problem of controlling FDR in an online
manner. Concretely, we consider an ordered, possibly infinite, sequence of hypotheses, arriving one at
each timestep, and for each hypothesis we observe a p-value along with a set of features specific to that
hypothesis. The decision whether or not to reject the current hypothesis must be made immediately at
each timestep, before the next hypothesis is observed. The model of multi-dimensional feature set pro-
vides a very general way of leveraging the auxiliary information in the data which helps in maximizing
the number of discoveries.

We propose a new class of powerful online testing procedures, where the rejections thresholds (sig-
nificance levels) are learnt sequentially by incorporating contextual information and previous results.
We prove that any rule in this class controls online FDR under some standard assumptions. We then
focus on a subclass of these procedures, based on weighting significance levels, to derive a practical
algorithm that learns a parametric weight function in an online fashion to gain more discoveries. We
also theoretically prove, in a stylized setting, that our proposed procedures would lead to an increase in
the achieved statistical power over a popular online testing procedure proposed by Javanmard & Mon-
tanari (2018). Finally, we demonstrate the favorable performance of our procedure, by comparing it to
state-of-the-art online multiple testing procedures, on both synthetic data and real data generated from
different applications.
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1 Introduction

Multiple hypotheses testing - controlling overall error rates when performing simultaneous hypothesis tests
- is a well-established area in statistics with applications in a variety of scientific disciplines (Dickhaus,
2014; Dudoit & van der Laan, 2007; Roquain, 2011). This problem has become even more important with
modern data science, where standard data pipelines involve performing a large number of hypotheses tests
on complex datasets, e.g., does this change to my webpage improve my click-through rate, is this ad effective
for this population of users, or is this gene mutation associated with certain trait?

In hypothesis testing problems, each hypothesis is summarized to one p-value, which we use to decide
whether to reject the null hypothesis, i.e., claim it as a non-null. Typically, a hypothesis is rejected if p-value
is below some significance level. The rejected hypotheses are called discoveries, and the subset of these that
were truly null but mistakenly rejected are called false discoveries. The false discovery rate (FDR) namely,
the expected fraction of discoveries that are false positives is the criterion of choice for statistical inference
in multiple hypothesis testing problems. The traditional multiple testing research has focused on the offline
setting, which means we have an entire batch of hypotheses and the corresponding p-values. In their seminal
work, Benjamini & Hochberg (1995) developed a procedure (called BH procedure) to control FDR below
a preassigned level for this offline setting. However, the fact that offline FDR control techniques require
aggregating p-values from all the tests and processing them jointly, makes it impossible to utilize them for
a number of applications which are best modeled as an online hypothesis testing problem (Foster & Stine,
2008) (a more formal definition will be provided later). In this scenario, we assume that an infinite sequence
of hypotheses arrive sequentially in a stream, and decisions are made only based on previous results before
next hypothesis arrives. In other words, the decisions have to be made without access to the number of
hypotheses in the stream or the future p-values, but solely based on the previous decisions. For example, in
marketing research a sequence of A/B tests can be carried out in an online fashion, or in a pharmaceutical
drug test a sequence of clinical trial are conducted over time, or with publicly available datasets where new
hypotheses are tested in an on-going fashion by different researchers.

Foster & Stine (2008) designed the first online alpha-investing procedures that use and earn alpha-wealth
in order to control a modified definition of FDR (referred to as mFDR), which was later extended to a class
of generalized alpha-investing (GAI) rules by Aharoni & Rosset (2014). Javanmard & Montanari (2015,
2018) showed that monotone GAI rules, appropriately parametrized, can control the FDR for independent
p-values as opposed to the modified FDR controlled in (Aharoni & Rosset, 2014; Foster & Stine, 2008).
Within this class, of special note here is an procedure (testing rule) called LORD that the authors noted
performs consistently well in practice. Ramdas et al. (2017b) demonstrated a modification to the GAI class
(called GAI++) that improved the earlier GAI algorithms (uniformly), and the improved LORD++ method
arguably represents the current state-of-the-art in online multiple hypothesis testing. Very recently, (Ramdas
et al., 2018) empirically demonstrated that using adaptiveness, some further improvements in the power over
LORD++ can be obtained. We survey these online testing procedures in more detail in Section 2.

All these above online testing procedures take p-values as input and decide at each time based on pre-
vious decision outcomes. However, these procedures ignore additional information that is often available
in modern applications. In addition to the p-value Pi, each hypothesis Hi could also have a feature vector
Xi lying in some space X ⊆ Rd. The feature vector encode auxiliary1 information related to the tested
hypothesis, and is also often referred as context. The feature vector Xi only carry indirect information about
the likelihood of the hypothesis Hi to be false but the relationship is not fully known ahead of time. For
example, when conducting an A/B test for a logo size change in a website, contextual information such as
text, layouts, images and colors in this specific page can be useful in making a more informative decision.
Similarly another example arises when testing whether a mutation is correlated with the trait, here contextual

1Also sometimes referred to as prior or side information.
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information about both the mutation and the trait such as its location, epigenetic status, etc., could provide
valuable information that can increase the power of these tests.

While the problem of using auxiliary information in testing has been considered in offline setting (Gen-
ovese et al., 2006; Ignatiadis et al., 2016; Lei & Fithian, 2018; Li & Barber, 2016b; Ramdas et al., 2017a;
Xia et al., 2017), in this paper we focus on the more natural online setting, where unlike the batch setting
p-values and contextual features are not available at the onset, and a decision about a hypothesis should be
made when it is presented. To the best of our knowledge, this generalization of the online testing problem
has not been considered before. Our main contributions in this paper are as follows.

(1) Incorporating Contextual Information. Building on GAI/GAI++ rules (Aharoni & Rosset, 2014;
Ramdas et al., 2017b), we propose a new broad class of powerful online testing rules, that we refer
to as contextual generalized alpha-investing (CGAI) rules. This new class of rules incorporates the
available contextual features in the testing process, and we prove that any monotone rule from this class
can control online FDR under some standard assumption on p-values. More formally, we assume each
hypothesis H is characterized by a tuple (P,X) where P ∈ (0,1) is the p-value, X is the contextual
feature vector. We use a very general model for these X’s, as a vector coming from some generic space
X ⊆ Rd. We consider a sequence of hypotheses (H1,H2, . . . ) that arrive sequentially in a stream one
at each timestep t = 1,2, . . . , with corresponding ((P1,X1), (P2,X2), . . . ), our testing rule generates
a sequence of significance levels (α1, α2, . . . ) at each timestep based on previous decisions and con-
textual information seen so far. Our test for each hypothesis Ht takes the form 1{Pt ≤ αt}, and under
mutual independence of the p-values and independence between the p-values Pt’s and the contextual
features Xt’s for null hypotheses, we show that any monotone rule from this class ensures that FDR
remains below a preassigned level at any time. In the proof the sigma-field formalizes “what we know”
at time t, and we define a filtration via the sigma-fields of both previous decisions and the contextual
features. We also show that we can have mFDR control under a weaker assumption on p-values.

(2) Context Weighting. While contextual generalized alpha-investing (CGAI) is a rich class of FDR con-
trol rules, we focus on a subclass of these rules for designing a practical online FDR control procedure
and to compare the statistical power of various procedures. In particular, we focus on a subclass, that we
refer to as context-weighted generalized alpha-investing (CwGAI) rules, where the contextual features
are used for weighting the significance levels in an online setting. In particular, we take a parametric
function ω(; θ) for a set of parameters θ, and at timestep t use ω(Xt; θ) as a real-valued weight on αt
generated through GAI rules, with the intuition that larger weights should reflect an increased willing-
ness to reject the null. Since the parameter set θ is unknown, a natural idea here will be to learn it in an
online fashion to maximize the number of empirical discoveries. This gives rise to a new class of online
testing rules that incorporates the context weights through a learnt parametric function.

(3) Statistical Power Analysis. Having established that our procedures control the false discovery rate,
we next turn to the question of what effect context weighting has on the statistical power in an online
setting. Lots of factors, such as frequency of true hypotheses, or on their order, affect the power. Hence,
to make a rigorous comparison, we consider a standard mixture model used in such analyses where
each null hypothesis is false with a fixed (unknown) probability (Genovese et al., 2006; Javanmard &
Montanari, 2018; Lei & Fithian, 2018), and focus on a slightly weaker variant of the popular online
testing LORD procedure (Javanmard & Montanari, 2018). By considering a very general model of
weighting where weights are random variables, and under the assumption that weights are positively
associated with the null hypotheses being false, we derive a natural sufficient condition on the weights
under which weighting improves the power in an online setting, while still guaranteeing FDR control.
This is the first result that demonstrates the benefits of appropriate weighting in the online setting. Prior
to this such results were only known in the offline setting (Genovese et al., 2006).



5

(4) A Practical Procedure. To design a practical online FDR control procedure with good performance,
we model the parametric function ω(; θ) as a neural network (multilayer perceptron), and train it in
an online fashion to maximize the number of empirical discoveries. Our experimental evidence on a
range of synthetic and real datasets show that our proposed procedure makes substantially more correct
decisions compared to state-of-the-art online testing procedures.

We formally describe the online multiple testing problem setup and review the published literature in
this area in Section 2. Here we start with a review of some relevant prior work in offline multiple testing.

1.1 Related Work in the Offline Setting

In the offline setting, where we have access to the entire batch of p-values at one time instant, a number
of procedures have been proposed to take advantage of the available auxiliary information to increase the
power of test (to make more true discoveries). As we note below, the modeling of auxiliary information
varies.

Storey (2002) proposed an adaptive FDR-control procedure based on estimating the proportion of true
nulls from data. Reweighting the p-values by applying priors was considered by (Benjamini & Hochberg,
1997; Dobriban, 2016; Dobriban et al., 2015; Genovese et al., 2006). In scenarios where priors are about
spatial or temporal structure on hypotheses, Independent Hypothesis Weighting procedure was proposed
by Ignatiadis et al. (2016), which clusters similar hypotheses into groups and assigns different weights to
these groups. Hu et al. (2010) utilized the idea of both grouping and estimating the true null proportions
within each group. Some more procedures in (Foygel-Barber & Candès, 2015; G’Sell et al., 2016; Lei &
Fithian, 2016; Li & Barber, 2016a) incorporate a prior ordering as the auxiliary information to focus on more
promising hypotheses near the top of the ordering. This motivation underlies also the first online multiple
testing paper of (Foster & Stine, 2008).

Structure-adaptive BH algorithm (SABHA) (Li & Barber, 2016b) and Adaptive p-value Thresholding
(AdaPT) (Lei & Fithian, 2018) are two recent FDR control adaptive methods which derive the feature vector
dependent decision rules. SABHA first censors the p-values below a fixed level, and then uses the censored
p-values to estimate the non-null proportion (using non-parametric methods in practice), and then applies
the weighted BH procedure of (Genovese et al., 2006). AdaPT is based on adaptively estimating a Bayes-
optimal p-value rejection threshold. At each iteration of AdaPT, an analyst proposes a significance threshold
and observes partially censored p-values, then estimates the false discovery proportion (FDP) below the
threshold, and proposes another threshold, until the estimated FDP is below the desired level.

The offline testing algorithm mostly related to our results is the NeuralFDR procedure proposed by Xia
et al. (2017), which uses a neural network to parametrize the decision rule. This procedure in the offline
setting, with access to all the p-values and the contextual features, comes up with a single decision rule t(X)

based on training a neural network for optimizing on the number of discoveries. In contrast, our method is
in online multiple testing setup where we do not know all the p-values or the contextual features at once,
and decision rules are different at each time, and varies as a function of previous outcomes and features.

1.2 Notation and Organization

We denote [n] = {1, . . . , n}. Vectors are denoted by boldface letters. Given a sequence (Γi)i∈N, we denote
by Γ(n) = ∑ni=1 Γi its partial sum. Bernoulli(⋅) and Uniform(⋅), with appropriate parameters, represent ran-
dom variables drawn from the standard Bernoulli and uniform distributions respectively. N (µ,σ2) denotes
a random variable from normal distribution with mean µ and variance σ2.

Organization. The rest of the paper is organized as follows. In Section 2, we introduce the online multiple
testing problem and survey some of the prior work in this area. In Section 3, we propose a new broad class
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of powerful testing procedures which can incorporate contextual (side) information of the hypothesis, and
present our theoretical guarantee of online FDR control for this class. In Section 4, we focus on a subclass
of this above broad class, which are based on converting contextual features into weights, and using that
to reweight the significance levels. In Section 5, we theoretically show the increase in power those can be
obtained by using weighted procedures in the online setting. In Section 6, we design a practical algorithm
for online multiple testing with contextual information, and demonstrate its performance on synthetic and
real datasets.

2 Online False Discovery Rate Control: A Survey

We start with a review of the relevant notions in online multiple testing. The online model was first intro-
duced by (Foster & Stine, 2008). Here we want to test an ordered (possibly infinite) sequence of hypotheses
arriving in a stream, denoted byH = (H1,H2,H3, . . . ,), where at each timestep t we have to decide whether
to reject Ht having only access to previous information. As is standard notation, Ht ∈ {0,1} indicates if
hypothesis t is null (Ht = 0) or alternative (Ht = 1). Each hypothesis is associated with a p-value Pt. The
results in this paper do not depend on the actual test used for generating the p-value. By definition of a valid
p-value, if the hypothesis Ht is truly null, then the corresponding p-value (Pt) is stochastically larger than
the uniform distribution, i.e.,

Super-uniformity of Pt: If Ht = 0 (Ht is null) then Pr[Pt ≤ u] ≤ u, for all u ∈ [0,1]. (1)

No assumptions are made on the marginal distribution of the p-values for hypotheses that are non-nulls
(alternatives). Although they can be arbitrary, they should be stochastically smaller than the uniform distri-
bution, since only then do they carry signal that differentiates them from nulls. LetH0 be the set {t ∣Ht = 0}
of indices of true null hypotheses inH and letH1 be the set {t ∣Ht = 1} of remaining hypotheses inH.

An online multiple testing procedure is defined as a decision rule which provides a sequence of signifi-
cance level {αt} and makes the following decisions:

Rt = 1{Pt ≤ αt} =

⎧⎪⎪
⎨
⎪⎪⎩

1 Pt ≤ αt ⇒ reject Ht,

0 otherwise ⇒ accept Ht.
(2)

A rejection of the null hypothesis Ht indicated by the event Rt = 1 is also referred as discovery.
Let us start by defining the false discovery rate (FDR), and true discovery rate (TDR) formally in the

online setting. For any time T , denote the first T hypotheses in the stream by H(T ) = (H1, . . . ,HT ). Let
R(T ) = ∑

T
t=1Rt be the total number of discoveries (rejections) made by the online testing procedure till

time T , and let V (T ) = ∑t∈H0 Rt be the number of false discoveries (rejections) in them. Then online false
discovery proportion (denoted as FDP) and the corresponding online false discovery rate (denoted as FDR)
till time T are defined as:

FDP(T ) ∶=
V (T )

R(T ) ∨ 1
, FDR(T ) ∶= E[FDP(T )].

Here, R(T ) ∨ 1 is the shorthand for max{R(T ),1}. The expectation is over the underlying randomness.
The false discovery rate is the expected proportion of false discoveries among the rejected hypotheses. As
mentioned earlier, this criterion was first introduced by (Benjamini & Hochberg, 1995) in the offline multiple
testing scenario. Similarly, let S(T ) = ∑t∈H1 Rt be the number of true discoveries (rejections) made by the
online testing procedure till time T , and let N1(T ) be the number of true alternatives (non-nulls). Then
online true discovery proportion (denoted as TDP) and online true discovery rate (denoted as TDR) till time
T are defined as:

TDP(T ) ∶=
S(T )

N1(T ) ∨ 1
, TDR(T ) ∶= E[TDP(T )].
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The true discovery rate is also referred as to as power.
In the online setting, the question that arises is how can we generate a sequence of (α1, α2, . . . , αt, . . . )

such that we have control over the false discovery rate (FDR). Formally, the goal is to figure out a sequence
of significance levels (αt)t∈N such that the FDR can be controlled under a given level α at any time T ∈ N,
i.e.,

sup
T

FDR(T ) ≤ α.

Note that none of these above four metrics (FDP, FDR, TDP, or TDR) can be computed without the under-
lying true labels (ground truth).

A variant of FDR that arose from early works (Foster & Stine, 2008) on online multiple hypothesis
testing is that of marginal FDR (denoted as mFDR), defined as:

mFDR(T)η =
E[V (T )]

E[R(T )] + η
.

A special case of mFDR(T) = E[V (T )]

E[R(T )]+1 is when η = 1. mFDR measures the ratio of expected number
of false discoveries to expected number of discoveries. Informally, while FDR controls a property of the
realized set of tests, mFDR is the ratio of the two expectations over many realizations. In general, the
gap between FDR and mFDR can be very significant, and in particular controlling mFDR does not ensure
controlling FDR at a similar level (Javanmard & Montanari, 2018). We will also provide a theoretical
guarantee on mFDR control in a contextual setting under some weaker assumptions on p-values.

Generalized Alpha-Investing Rules. Foster & Stine (2008) proposed the first class of online multiple test-
ing rules (referred to as alpha-investing rules) to control mFDR (under some technical assumptions). Aha-
roni & Rosset (2014) further extended this class to generalized alpha-investing (GAI) rules, again to control
mFDR. The general idea behind these rules is that you start with an initial wealth, which is under the de-
sired control level. Some fraction of the wealth is spent (i.e., wealth decreases) for testing each hypothesis.
However, each time a discovery occurs, a reward is earned, i.e., wealth increases for further tests. Building
on these results, Javanmard & Montanari (2015) demonstrated that monotone GAI rules, appropriately pa-
rameterized, can control the (unmodified) FDR for independent p-values. We now introduce the GAI rules
conceptualized in these works.

Given a sequence of input p-values (P1, P2, . . . ), a generalized alpha-investing rule generates a sequence
of significance levels (α1, α2, . . . ), which is then used for generating the sequence of decisionsRt’s as in (2).
In a GAI rule, the significance levels at time t is a function of prior decisions (till time t − 1):

αt = αt(R1, . . . ,Rt−1).

In particular, this means that αt does not directly depend on the observed p-values but only on past decisions.
LetF t = σ(R1, . . . ,Rt) denote the sigma-field of decisions till time t. In GAI rules, we insist that αt ∈ F t−1.

Any GAI rule begins with an wealth of W (0) > 0, and keeps track of the wealth W (t) available after
t testing steps. Formally, a generalized alpha-investing rule is specified by three (sequences of) functions
αt, φt, ψt ∈ F

t−1. Here, φt is the penalty of testing a new hypothesis Ht, and ψt is the reward for making
a rejection (discovery) at time t. In other words, a part of the wealth is used to test the tth hypothesis at
level αt, and the wealth is immediately decreased by an amount φt. If the tth hypothesis is rejected, that is
if Rt = 1, then an extra wealth equaling an amount ψt is added to the current wealth. This can be explicitly
stated as:

W (0) = w0, (3)

W (t) =W (t − 1) − φt +Rt ⋅ ψt, (4)
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where 0 < w0 < α is the initial wealth. The parameters w0 and the sequences αt, φt, ψt are all user-defined.
A requirement is that the total wealth W (t) is always non-negative, and hence φt ≤W (t − 1). If the wealth
ever equals zero, the procedure is not allowed to reject any more hypotheses since it has to set αt = 0 from
then on. An additional restriction is needed from the goal to control FDR, in that whenever a rejection takes
place, ψt cannot be arbitrary. Formally, this constraint is defined as:

ψt ≤ min{φt + bt,
φt
αt

+ bt − 1}. (5)

Javanmard & Montanari (2015) defined bt as a user-defined constantB0, setting it to α−w0. Recently, Ram-
das et al. (2017b) demonstrated that setting

bt = α −w01{ρ1 > t − 1}

could potentially lead to larger statistical power. Here, for a positive integer k,

ρk ∶= min
i∈N

{
i

∑
t=1

Rt = k},

is the time of kth rejection (discovery). Ramdas et al. (2017b) refer to this particular setting of bt as GAI++
rules. Unless otherwise specified, we use this improved setting of bt throughout this paper.

Another important property when dealing with GAI rules is that of monotonicity. As studied by (Ja-
vanmard & Montanari, 2015, 2018) in the context of GAI rules, and as is predominantly the case in offline
multiple testing, monotonicity is the following condition:

if R̃i ≤ Ri for all i ≤ t − 1 then αt(R̃1, . . . , R̃t−1) ≤ αt(R1, . . . ,Rt−1). (6)

While these online FDR procedures are widely used, a major shortcoming of them is that they ignore
additional information that is often available during testing. Each hypothesis, in addition to the p-value,
could have a feature vector which encodes contextual information related to the tested hypothesis. For
example, in genetic association studies, each hypothesis tests the correlation between a variant and the trait.
We have a rich set of features for each variant (e.g., its location, conservation, epigenetics, etc.) which could
inform how likely the variant is to have a true association.

In this paper, we introduce the problem contextual online multiple testing, which captures the presence
of this auxiliary information in modern applications.

Level based On Recent Discovery (LORD) Rules. One specific subclass of GAI rules (proposed by (Ja-
vanmard & Montanari, 2015, 2018)) that arguably is state-of-the-art in online multiple hypothesis testing
and performs consistently well in practice is known as Level based On Recent Discovery (LORD). We will
focus on weighted variants of LORD later in this paper when we discuss about statistical power of tests.
In fact, we will consider the recently improved LORD++ rules (proposed by (Ramdas et al., 2017b)) that
achieves the same or better statistical power than the LORD rules (uniformly).

The idea behind LORD (and LORD++) rules is that the significance level αt is a function based only
on most recent discovery time. Formally, we start with any sequence of nonnegative numbers γ = (γt)

∞
t=1,

which is monotonically non-increasing with ∑∞t=1 γt = 1. At each time t, let τt be the last time a discovery
was made before t, i.e.,

τt ∶= max{i ∈ {1, . . . , t − 1} ∶ Ri = 1},

with τt = 0 for all t before the first discovery. The LORD rule defines αt, φt, ψt in the following generalized
alpha-investing fashion.2

2Note that Javanmard & Montanari (2018) defined three versions of LORD that slightly vary in how they set the significance
levels. In this paper, we stick to one version, though much of the discussion in this paper also holds for the other versions.
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Level based On Recent Discovery (LORD) (Javanmard & Montanari, 2015, 2018):

W (0) = w0,

φt = αt =

⎧⎪⎪
⎨
⎪⎪⎩

γtw0 if t ≤ ρ1
γt−τtb0 if t > ρ1,

ψt = b0,

b0 = α −w0.

Typically, we will set w0 = α/2, in which case, the above rule could be simplified as φt = αt = γt−τtb0 =
γt−τtα/2.

As with any GAI rule, (Ramdas et al., 2017b) showed that one could replace b0 with bt = α −w01{ρ1 >
t − 1} to achieve potentially better power, while still achieving online FDR control at level α. With this
replacement, we defined LORD++ as follows.
Improved Level based On Recent Discovery (LORD++) (Ramdas et al., 2017b):

W (0) = w0 ≥ α/2,

φt = αt = γt−τtbt,

ψt = bt = α −w01{ρ1 > t − 1}.

It can be easily observed that both LORD and LORD++ rules satisfy the monotonicity condition from (6).

SAFFRON Procedure. This is a very recently proposed online FDR control procedure by Ramdas et al.
(2018). The main difference between SAFFRON (Serial estimate of the Alpha Fraction that is Futilely
Rationed On true Null hypotheses) and the previously discussed LORD/LORD++ procedures comes in that
SAFFRON is an adaptive method, based on adaptively estimating the proportion of true nulls. SAFFRON
can be viewed as an online extension of Storey’s adaptive version of BH procedure in the offline setting.
SAFFRON does not belong to the GAI class, whose extension to the contextual online setting is the main
focus of this paper. See Appendix C for more details about SAFFRON, and the experiments with SAFFRON
that suggests that contextual information could potentially help here too.

3 Contextual Online FDR Control

We start with an informal definition of the contextual online multiple testing problem. Consider a setting
where we test an ordered (possibly infinite) sequence of null hypotheses, denoted H = (H1,H2,H3, . . . ,).
Each hypothesisHt is associated with a p-value Pt ∈ (0,1) and a vector of contextual featuresXt ∈ X ⊆ Rd,
thus can be represented by a tuple (Ht, Pt,Xt). We observe Pt and Xt, but do not know Ht. The goal
of contextual online testing, is at each step t, decide whether to reject Ht having only access to previous
decisions and contextual information seen so far. The overall goal is to control online FDR under a given
level α at any time and improve the number of useful discoveries by using the contextual information. All
missing details in this section are collected in Appendix A.

Under the alternative, we denote the density distribution (PDF) of p-values as f1(p ∣ X) (for X ∈ X ),
and the cumulative distribution (CDF) of p-values as F1(p ∣ X). Here f1(p ∣ X) can be any arbitrary
unknown function, as long as the p-values are stochastically smaller than those under the null. Note that
f1(p ∣X) is not identifiable from the data as we never observe Ht’s directly. This can be illustrated through
a simple example described in Appendix A. Let us now formally define the contextual online FDR control
problem.
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Definition 1 (Contextual Online FDR Control Problem). Given a (possibly infinite) sequence of (Pt,Xt)’s
(t ∈ N) where Pt ∈ (0,1) and Xt ∈ X , the goal is to generate a significance levels α′ts as a function of prior
decisions and contextual features

αt = αt(R1, . . . ,Rt−1,X1, . . . ,Xt),

and a corresponding set of decisions

Rt =

⎧⎪⎪
⎨
⎪⎪⎩

1 Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt),

0 otherwise.

such that supT FDR(T ) ≤ α.

A related definition would be to control mFDR (instead of FDR) under level α. Note that in the con-
textual setting, we consider the significance levels to be functions of prior decisions and contextual features
seen so far. This differs from existing online multiple testing rules described in the previous section where
the significance levels (αt’s) depend only on prior results (αt ∈ F t−1), i.e., does not use any contextual
information.

In the presence of contextual information, we use the sigma-field of decisions till time t as F t =

σ(R1, . . . ,Rt), and the sigma-field of features till time t as Gt = σ(X1, . . . ,Xt). Our first contribution
in this paper is to define a contextual extension of GAI rules, that we refer to as Contextual Generalized
Alpha-Investing (contextual GAI or CGAI) rules. A contextual GAI rule is defined through three functions,
αt, φt, ψt ∈ σ(F

t−1 ∪ Gt), that are all computable at time t.
A valid contextual GAI rule is required to satisfy the following conditions:

Contextual GAI:

Initial wealth: W (0) = w0,with 0 < w0 < α, (7)

Wealth Update: W (t) =W (t − 1) − φt +Rt ⋅ ψt, (8)

Non-negativity: φt ≤W (t − 1), (9)

Upper bound on reward: ψt ≤ min{φt + bt,
φt
αt
+ bt − 1}. (10)

We set bt = α −w01{ρ1 > t − 1} as proposed by (Ramdas et al., 2017b).
Also as with GAI rules, we can add a monotonicity property to a contextual GAI rule as follows:

Monotoncity: If R̃i ≤ Ri for all i ≤ t − 1 then

αt(R̃1, . . . , R̃t−1,X1, . . . ,Xt) ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt), for any fixed Xt = (X1, . . . ,Xt). (11)

A contextual GAI rule satisfying the monotonicity condition is referred to as monotone contextual GAI.
Our first result establishes the online FDR control for any monotone contextual GAI rule under inde-

pendence of p-values, and the mutual independence of p-values and contextual features under the null.3

We start by presenting the following lemma, which is an intermediate result for the proof of FDR later.
Note that Rt = 1{Pt ≤ αt}, where αt = αt(R1, . . . ,Rt−1,X1, . . . ,Xt) is σ(F t−1 ∪ Gt)-measurable and
is a coordinatewise non-decreasing function of R1, . . . ,Rt−1 for any fixed Xt = (X1, . . . ,Xt). Due to the
super-uniformity of p-values under the null (1), we immediately have that for independent p-values under
the null the following conditional super-uniformity condition holds.

Pr[Pt ≤ αt ∣ σ(F
t−1

∪ G
t
)] ≤ αt. (12)

3Note that a standard assumption in hypothesis testing is that the p-values under the null are uniformly distributed in (0,1),
which implies the mutual independence of p-values and contextual features under the null.
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Lemma 1 states a more general result about super-uniformity of independent p-values under the null. These
independence assumptions are standard in multiple testing literature (see, e.g., Javanmard & Montanari
(2018); Ramdas et al. (2017b); Xia et al. (2017) among others). The proof is based on a leave-one-out
technique a variant of which was also used by Ramdas et al. (2017b) (and also by Javanmard & Montanari
(2018)) in their analyses. The main distinction for us comes in that we consider the sigma-field at each time
t as σ(F t−1 ∪ Gt) including the information of contextual features till time t, instead of just F t−1.

Lemma 1 (Super-uniformity). Let g ∶ {0,1}T → R be any coordinatewise non-decreasing function such
that g(R) > 0 for any vector R ≠ (0, . . . ,0). Then for any index t ≤ T such that t ∈H0, we have

E [
1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}

g(R1, . . . ,RT ) ∨ 1
∣σ(F t−1 ∪ Gt)] ≤ E [

αt(R1, . . . ,Rt−1,X1, . . . ,XT )

g(R1, . . . ,RT ) ∨ 1
∣σ(F t−1 ∪ Gt)].

The following theorem establishes the FDR property on any monotone contextual GAI rule under some
independence assumptions on the p-values. Note that, as mentioned above, the p-values (Pt) could be
arbitrary related to the contextual features (Xt) under the alternative (when Ht = 1). The proof considers
two cases: (a) Ht = 0 in which case it uses the super-uniformity statement established in Lemma 1 and the
fact that ψt ≤ φt/αt + bt − 1 (by definition), and (b) Ht = 1 in which case we use the fact that ψt ≤ φt + bt
(by definition).

Theorem 1. [FDR Control] Consider a sequence of ((Pt,Xt))t∈N of p-values and contextual features. If the
p-values Pt’s are independent, and additionally Pt are independent of all (Xt)t∈N are independent under the
null (whenever Ht = 0), then for any monotone contextual generalized alpha-investing rule (i.e., satisfying
conditions (7), (8), (9), (10), and (11)), we have online FDR control,

sup
T ∈N

FDR(T ) ≤ α.

Turning our attention to mFDR, we can prove a guarantee for mFDR control under a weaker condition
than that in Theorem 1. In particular, one can relax the independence assumptions to a weaker conditional
super-uniformity assumption from (12) (as mentioned above, the validity of p-values (1) and independence
implies conditional super-uniformity). We define that a null p-value is conditionally super-uniform on past
discoveries and contextual features so far, if the following holds

Conditional super-uniformity of Pt: If Ht = 0 (Ht is null) then Pr[Pt ≤ αt ∣ σ(F
t−1

∪ G
t
)] ≤ αt. (13)

Our next theorem formalizes the mFDR control for any contextual GAI rule (not necessarily monotone)
under the above condition.

Theorem 2. [mFDR Control] Consider a sequence of ((Pt,Xt))t∈N of p-values and contextual features. If
the p-valuesPt’s are conditionally super-uniform distributed (as in (13)), then for any contextual generalized
alpha-investing rule (i.e., satisfying conditions (7), (8), (9), and (10)), we have online mFDR control,

sup
T ∈N

mFDR(T ) ≤ α.

Remark 1. For arbitrary dependent p-values and contextual features, the FDR control can also be obtained
by using a modified LORD rule defined in Javanmard & Montanari (2018), under a special case where the
contextual features are transformed into weights satisfying certain conditions. See Proposition 2 for a formal
statement.
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4 Context-weighted Generalized Alpha-Investing Rules

The contextual GAI rules, introduced in the previous section, form a very general class of online multiple
testing rules. In this section, we focus on a subclass of these rules, which we refer to as Context-weighted
Generalized Alpha-Investing (context-weighted GAI or CwGAI) rules. Specifically, we consider αt to be
a product of two functions with the first one of previous decisions and second one based on the current
contextual feature. Borrowing from offline multiple testing literature, we refer to the second parametric
function as a weight function (denoted by ω(⋅)). Therefore, a context-weighted GAI rule has this form,

αt(R1, . . . ,Rt−1,X1, . . . ,Xt) ∶= αt(R1, . . . ,Rt−1) ⋅ ω(Xt; θ), (14)

where ω(Xt; θ) is a parametric function with a parameter set θ ∈ Θ. Since CwGAI is a subclass of CGAI
rules, the above FDR and mFDR control theorems are valid for this class too.

Our reasons for considering this subclass of contextual GAI rules include: a) With context-weighted
generalized alpha-investing rules we obtain a simpler form of αt by separating the contextual features from
that of previous outcomes, making it easier to design functions that satisfy the monotonicity requirement of
the GAI rules, b) It is now convenient to model the weight function by any parametric function, and c) We
can learn the parameters of the weight function empirically by maximizing the number of discoveries. This
forms the basis of a practical algorithm for contextual online FDR control that we describe in Section 6.
Note that the GAI rules are still a subclass of context-weighted generalized alpha-investing rules by taking
the weight function as a constant 1. We illustrate the relationship among various classes of testing rules in
Figure 1.

The idea of weighting p-values by using prior information has been widely studied in offline multiple
testing setup (Genovese et al., 2006; Ignatiadis et al., 2016; Lei & Fithian, 2018; Li & Barber, 2016b;
Ramdas et al., 2017a; Xia et al., 2017). In many applications, contextual information can provide some prior
knowledge about the true underlying state at current time, which may be incorporated in by a weight ωt =
ω(Xt; θ). Intuitively, the weights indicate the strength of a prior belief whether the underlying hypothesis
is null or not. Therefore, a larger weight ωt > 1 provides more belief of a hypothesis being an alternative
which makes the procedure to reject it more aggressively, while a smaller weight ωt < 1 indicates a higher
likelihood of a null which makes the procedure reject it more conservatively.

Weighting in Online vs. Offline Setting with FDR Control. In the offline setting with a fixed set
{P1, . . . , Pn} of p-values, the idea of using prior weights is as follows: a) first the given set of weights
(say, ω̂′is) are rescaled to make the average equal to one giving rise to new ωi’s (i ∈ [n]), and b) then any
existing offline FDR control algorithm is applied by replacing Pi with the weighted p-value Pi/ωi. This p-
value weighting in the offline setting was first suggested by (Genovese et al., 2006), and we refer the reader
to that paper for a detailed account on p-value weighting. However, in an online setting, the weights ωt’s
are computed at each timestep t without access to the total number of hypothesis or contextual information
ahead of time, which means weights cannot be rescaled to have unit mean in advance.

Instead of weighting the p-values, as represented in (14), we consider weighting the significance levels
αt’s, as was also considered by Ramdas et al. (2017a). Note that weighting p-values is equivalent to weight-
ing significance levels in terms of decision rules conditioning on the same significance levels, i.e., given
the same αt’s, we have {Pt/ωt ≤ αt} ≡ {Pt ≤ αtωt} for all t. The main difference is that when αt’s are
weighted, the penalty φt’s and rewards ψt’s also needs to be adjusted according to the GAI constraints. For
example, as dictated by (5), if we overstate our prior belief in the hypothesis being alternative by assigning
a large ωt > 1, the penalty will need to be more or the reward will need to be less.

Context-weighted LORD++. Next let us see how the principle of context weighting can be applied to
LORD++ rules defined in Section 2. Given a weight function, ω ∶ X × Θ → R, we define the context-
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Figure 1: Relationship among various testing rules. One could replace LORD with LORD++ (resp.
CwLORD with CwLORD++).

weighted LORD++ (CwLORD++) testing rule as follows.
Context-weighted LORD++ (CwLORD++):

W (0) = w0,

φt = αt = min{γt−τtbt ⋅ ω(Xt; θ),W (t − 1)},

ψt = bt = α −w01{ρ1 > t − 1}.

Similarly, given the function ω, we can also define context-weighted LORD using the LORD rules from Sec-
tion 2. As pointed out before, when αt’s are reweighted, the penalty φt’s are also adjusted accordingly. This
provides a clean way of incorporating the weights in an online setup without having to rescale the weights
to have unit mean.

In the next section, we see how weighting could be beneficial in an online setting. In Section 6, we
discuss an online multiple testing procedure based on CwLORD++ (see Algorithm 1), where we use a
neural network to model the weight function ω with parameters trained to adaptively increase the discovery
proportion over time. Our experimental investigation will be based on this procedure.

5 Statistical Power of Weighted Online Rules

In this section, we answer the question whether weighting helps in an online setting in terms of increased
power. We answer this question in affirmative, in the context of the popular LORD procedure of Javanmard
& Montanari (2018). The benefits of weighting in the offline setting, in terms of increased power was first
studied by Genovese et al. (2006), who showed that a weighted BH procedure improves the power over the
corresponding unweighted procedure if weighting is informative, which roughly means that the weights are
positively associated with the non-nulls. Missing details from section are collected in Appendix B.

We use a model setup as in (Genovese et al., 2006) modified to an online setting. In particular, we
consider a mixture model where each null hypothesis is false with probability π1 independently of other
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hypotheses, and the p-values corresponding to different hypotheses are all independent. While the mixture
model is admittedly idealized, it does offer a natural ground for comparing the power of various testing
procedures (Genovese et al., 2006; Javanmard & Montanari, 2018). Let us start with a formal description of
the mixture model. The rest of the discussion in this section will be with respect to this mixture model.

Mixture Model. For any t ∈ N, let

H1, . . . ,Ht
i.i.d.
∼ Bernoulli(π1),

X1, . . . ,Xt
i.i.d.
∼ L(X ),

Pt ∣Ht = 0,Xt ∼ Uniform(0,1),

Pt ∣Ht = 1,Xt ∼ F1(p ∣Xt).

where 0 < π1 < 1 and where L(X ) is a probability distribution on the contextual feature space X . Let
F = ∫ F1(p ∣ X)dL(X ) be the marginal distribution of p-value under alternative, which we assume is
stochastically smaller than the uniform distribution. Marginally, the p-values are i.i.d. from the CDFG(a) =
(1 − π1)U(a) + π1F (a), where U(a) is the CDF of Uniform(0,1). For this mixture model, a lower bound
(and in some cases tight) bounds on the power of the LORD procedure was established by Javanmard &
Montanari (2018). Our aim will be to compare this with the power of a weighted version of LORD to
establish a separation.

We consider the model of general weighting where weight is a random variable that are conditionally
independent of Pt givenHt for all t = 1 . . . ,∞. We assume that weight ω has different marginal distributions
under null and alternative,

ω ∣Ht = 0 ∼ Q0, ω ∣Ht = 1 ∼ Q1, (15)

for some unknown probability distributions Q0,Q1 that are continuous on (0,∞).

Remark 1. Note that this framework of weighting in (15) is very general. For example, it includes as a
special case, the following contextual weighting scenario, where we assume that there exists two different
implicit weight functions of contextual features X , ω0(X) and ω1(X), and the resulting marginal distribu-
tions of weights are computed as:

ω ∣Ht = 0 ∼ ∫ ω0(X)dL(X ), ω ∣Ht = 1 ∼ ∫ ω1(X)dL(X ).

So, here we can think of the distributions Q0 and Q1 in (15) as ∫ ω0(X)dL(X ) and ∫ ω1(X)dL(X ),
respectively.

Under (15), the marginal distribution of ω isQ = (1−π1)Q0+π1Q1. For j = 0,1, let uj = E[ω ∣Ht = j]
be the means ofQ0 andQ1 respectively. We also assume that the following notion of informative-weighting,
based on a similar condition used by (Genovese et al., 2006) in the offline setting.

Informative-weighting: u0 < 1, u1 > 1, u = E[ω] = (1 − π1)u0 + π1u1 = 1. (16)

Remark 2. We would like to point that E[ω] = 1 is an assumption on the weight distribution that may
not hold in a practical setting. So for empirical experiments, we will use an instantiation of CwLORD++
(see Section 6.1), that does not require this assumption. But for the theoretical comparison of the power of
different procedures, we make this assumption, under which we can use the p-value reweighting akin to the
offline setting.
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Let the weights ωt’s be random variables that are drawn i.i.d. from this mixture model with marginal
distribution Q. Taking the LORD++ rule from Section 2, we define a weighted LORD++ rule as follows.

Definition 2 (Weighted LORD++). Given a sequence of p-values, (P1, P2, . . . ) and weights (ω1, ω2, . . . ),
apply LORD++ with level α to the weighted p-values (P1/ω1, P2/ω2, . . . ).

We want to emphasize that the weighted LORD++ rule actually reweights the p-values (as done in the
offline weighted BH procedure (Genovese et al., 2006)) and then applies the original LORD++ to these
reweighted p-values. So this is slightly different from the idea of CwLORD++, that we mentioned above,
which reweights the significance levels and then applies it to the original p-values. To understand the differ-
ence, let us start from their definitions.

In LORD++, the penalty is φt = αt = γt−τtbt <W (t − 1), which is always less than current wealth due
to the construction of γt’s and w0. So in weighted LORD++, we are comparing reweighted p-value P ′

t to
the level αt = γt−τtbt, which is equivalent to comparing the original p-value Pt to the level α′t = γt−τtbtωt.

On the other hand, in CwLORD++, we take a penalty of the form φ̃t = α̃t = min{γt−τtbtωt,W (t −
1)}. We take the minimum of reweighted significance level and the current wealth, to prevent the penalty
γt−τtbtωt from exceeding the current wealth which would violate a tenet of the alpha-investing rules.

A simple corollary is that the actual significance levels used in weighted LORD++ are greater than those
in CwLORD++, i.e.,

α′t = γt−τtbtωt ≥ min{γt−τtbtωt,W (t − 1)} = α̃t.

That implies the power of weighted LORD++ is equal to or greater than the power of CwLORD++, whereas
the FDR of weighted LORD++ may also be higher than that of CwLORD++. From Theorem 1, we know
that we have FDR control with CwLORD++, however that result does not hold for weighted LORD++ (as
weighted LORD++ is not strictly a contextual GAI rule) We now show that the above weighted LORD++
can still control online FDR at any given level α under the condition E[ω] = 1, which we do in the following
proposition.

Proposition 1. Suppose that the weight distribution satisfies the informative-weighting assumption in (16).
Suppose that p-values Pt’s are independent, and are conditionally independent of the weights ωt’s given
Ht’s. Then the weighted LORD++ rule can control the online FDR at any given level α, i.e.,

sup
T ∈N

FDR(T ) ≤ α.

Weakening the Assumptions from Proposition 1. In most applications, the independence between p-
values and weights needed in Proposition 1 is not guaranteed. Javanmard & Montanari (2018) achieved the
FDR control under dependent p-values by using a modified LORD rule, which sets ψt = b0 and αt = φt =
γtW (τt) with the fixed sequence (γt) satisfying ∑∞t=1 γt(1 + log(t)) ≤ α/b0.

We can extend the FDR control results to the dependent weighed p-values. In particular, as long as the
following condition is satisfied, i.e., for each weighted p-value (Pt/ωt) marginally

Pr[Pt/ωt ≤ u ∣Ht = 0] ≤ u, for all u ∈ [0,1], (17)

then the upper bound of FDR stated in Theorem 3.7 in Javanmard & Montanari (2018) is valid for weighted
p-values. Specifically, if the modified LORD rule in Example 3.8 of Javanmard & Montanari (2018) is
applied to the weighted p-values under the assumption in (17), then the FDR can be controlled below level
α.

We formally state the results in the following proposition.
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Proposition 2. Suppose that the weight distribution satisfies the informative-weighting assumption in (16).
And weighted p-values (Pt/ωt) marginally satisfy (17). Then the modified LORD++ rule that applies to the
weighted p-values can control the online FDR at any given level α, i.e.,

sup
T ∈N

FDR(T ) ≤ α.

The proofs of these extension are almost the same as those in Javanmard & Montanari (2018) and are
omitted here.

Lower Bound on Statistical Power of Weighted LORD++. In order to compare different procedures,
it is important to estimate their statistical power. Here, we analyze the power of the weighted LORD++.
Define D(a) = Pr[P /ω ≤ a] as the marginal distribution of weighted p-values. Under the assumptions on
the weight distribution from (15), the marginal distribution of weighted p-value equals,

D(a) = Pr[P /ω ≤ a] = ∫ Pr[P /ω ≤ a ∣ ω = w]dQ(w)

= ∫ ∑
h∈{0,1}

Pr[P /ω ≤ a ∣ ω = w,H = h]g(h ∣ w)dQ(w)

= ∫ ∑
h∈{0,1}

Pr[P /w ≤ a ∣H = h]g(h ∣ w)dQ(w)

= ∫ ∑
h∈{0,1}

((1 − h)aw + hF (aw))g(h ∣ w)dQ(w)

= ∫ ∑
h∈{0,1}

((1 − h)aw + hF (aw))dQ(w ∣ h)g(h)

= ∑
h∈{0,1}

∫ ((1 − h)aw + hF (aw))dQ(w ∣ h)g(h)

= (1 − π1)∫ awdQ(w ∣ h = 0) + π1∫ F (aw)dQ(w ∣ h = 1)

= (1 − π1)µ0a + π1∫ F (aw)dQ1(w). (18)

Theorem 3. Let D(a) = Pr[P /ω ≤ a] be the marginal distribution of weighted p-values as in (18). Then,
the average power of weighted LORD++ rule is almost surely bounded as follows:

lim inf
T→∞

TDR(T ) ≥ (
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj)))
−1.

The proof of Theorem 3 uses the similar technique as the proof of the statistical power of LORD in
(Javanmard & Montanari, 2018). The main distinction is that we replace the marginal distribution of p-
values by the marginal distribution of weighted p-values. Theorem 3 also holds for a weighted LORD
procedure (replacing LORD++ by LORD in Definition 2).

Comparison of Power. Next, we establish conditions under which a weighting could lead to increased
power for LORD. We work with (a version of) the popular LORD procedure from Javanmard & Montanari
(2018), which sets

W (0) = w0 = b0 = α/2, φt = αt = b0γt−τt , ψt = b0. (19)
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As shown by Javanmard & Montanari (2018), the average power of LORD, under the mixture model, almost
surely equals4

For LORD: lim inf
T→∞

TDR(T ) = (
∞

∑
m=1

m

∏
j=1

(1 −G(b0γj)))
−1, (20)

where G(a) = (1 − π1)U(a) + π1F (a) as defined earlier.

Definition 3 (Weighted LORD). Given a sequence of p-values, (P1, P2, . . . ) and weights (ω1, ω2, . . . ),
apply LORD (19) with level α to the weighted p-values (P1/ω1, P2/ω2, . . . ).

The FDR control of weighted LORD under an independence assumption on p-values and an assump-
tion (16) on weights follows from Proposition 1. From the proof of Theorem 3, the average power of
weighted LORD almost surely equals

For weighted LORD: lim inf
T→∞

TDR(T ) =
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj))
−1. (21)

Assume F is differentiable and let f = F ′ be the PDF of p-values under alternative. Due to the fact that
p-values under alternative are stochastically dominated by the uniform distribution, there exists some a0 > 0
such that f(a) > 1 for all 0 ≤ a < a0. The following theorem is based on comparing this power on weighted
LORD from (21) with the power on LORD from from (20).

Theorem 4. [Power Separation] Suppose that the parameters in LORD (19) satisfy b0γ1 < a0, and the
weight distribution satisfies Pr[ω < a0/(b0γ1) ∣ Ht = 1] = 1 for every t ∈ N and the informative-weighting
assumption in (16). Then, the average power of weighted LORD is greater than equal to that of LORD
almost surely.

Note that the general weighting here includes the context-weighting discussed in Section 4 (through
Remark 1). So the results here indicate that using the informative context-weighting in the LORD rules will
help in making more true discoveries.

Remark 3. Intuitively, the condition implies that to achieve higher power while controlling FDR, the
weights given to alternate hypotheses cannot be too large. Let us discuss this point in the context of weighted
LORD++ and context-weighted LORD++.

In weighted LORD++, we can always assign large weights to make the reweighted p-values small
enough to be rejected, in order to achieve high power. But this can lead to a loss in FDR control which
is why we need the restriction of E[ω] = 1 for proving the FDR control in Proposition 1. Therefore, it is
natural to have weights not too large.

If we consider reweighting the significance levels as in CwLORD++, assigning a large weight will not
affect the FDR control (we prove that FDR is controlled for any choice of weights in Theorem 1). However,
the price is paid in terms of power. When we use a large weight, the penalty φt increases and therefore the
wealth might go quickly down to zero. Once the wealth is exhausted, the significance levels afterwards must
all be zero and thus preventing any further discoveries.

We now conclude this discussion with a simple example of how the conditions of Theorem 4 are easily
satisfied in a common statistical model.

4Javanmard & Montanari (2018) proposed multiple versions of LORD, and as noted by them the bound in (20) lower bounds
the average power on all the versions of LORD for the above mixture model.
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Example 1. To further interpret the weight condition in Theorem 4, let us take a concrete example. Consider
the hypotheses (H1, . . . ,HT ) concerning the means of normal distributions (referred to as normal means
model). This model corresponds to getting test statistics Zt ∼ N (µ,1). So the two-sided p-values are Pt =
2Φ(−∣Zt∣), where Φ is the CDF of standard normal distribution. Suppose under the null hypothesis µ = 0,
and under the alternative hypothesis 0 < µ ≤ 4. Then from simple computation we obtain that a0 > 0.022
for any µ such that 0 < µ ≤ 4. In fact, a0 increases as µ decreases. Typically, we set α = 0.05, so b0 = α/2 =
0.025. Using the sequence of hyperparameters {γt}t∈N (where γt = 0.0722 log(t ∨ 2)/(t exp(

√
log t))) as

suggested by (Javanmard & Montanari, 2018) for this normal means model, we compute that γ1 ≈ 0.117
when the number of total hypotheses T = 105. Therefore, we get a0/(b0γ1) ≈ 7.52 > 1. As long as the weight
ω is less than 7.52 with probability 1 under the alternative hypotheses (for any µ such that 0 < µ < 4), the
condition needed for Theorem 4 is satisfied.

6 Online FDR Control Experiments using Context-weighted GAI

In this section, we propose a practical procedure for contextual online FDR control based on context-
weighted GAI rules, and present numerical experiments to illustrate the performance gains achievable with
this procedure. Remember that a context-weighted GAI rule is a contextual GAI rule with

αt(R1, . . . ,Rt−1,X1, . . . ,Xt) = αt(R1, . . . ,Rt−1) ⋅ ω(Xt; θ),

where ω(Xt; θ) is a parametric function (with parameter set θ ∈ Θ) that is used to model the weight function.
Technically, we can use any parametric function here. In this paper, we choose a deep neural network
(multilayer perceptron) for this modeling due to its expressive power, as noted in a recent batch FDR control
result by (Xia et al., 2017).

Given this, a natural goal will be to maximize the number of empirical discoveries while controlling
FDR. To do so, we are going to find θ ∈ Θ that maximizes the number of discoveries (or discovery rate),
while empirically controlling the FDR. Note that if the function αt(R1, . . . ,Rt−1) is monotone (such as with
LORD or LORD++) with respect to theRi’s, the function αt(R1, . . . ,Rt−1)⋅ω(Xt; θ) is also monotone with
respect to the Ri’s. In particular, this means that under the assumptions on the p-values from Theorem 1,
FDR is controlled.

Training the Network, Setting θ. Algorithm 1 is used for training the network, with the goal of adaptively
increasing the discovery rate over time. Given a stream ((Pt,Xt))t∈N, the algorithm processes the stream
in batches, in a single pass. Let b ≥ 1 denote the batch size. Let θj be the parameter obtained before batch
j is processed, thus θj is only based on all previous p-values and contextual features which are assumed
to be independent of all future batches. For each batch, the algorithm fixes the parameters to compute the
significance levels for hypothesis in that batch. Define, the Empirical Discovery Rate for batch j as follows:

EDRj =
∑

(j+1)b
i=jb+1 1{Pi ≤ αi(Xi; θ)}

b
.

Since the above function is not differentiable, we use the sigmoid function σ to approximate the indicator
function, and define

EDRj =
∑

(j+1)b
i=jb+1 σ(λ(αi(Xi; θ) − Pi))

b
.

Here λ is a large positive hyperparameter. With this, the parameter set θ can now be optimized by using
standard (accelerated) gradient methods in an online fashion. Note that we are only maximizing empirical
discovery rate subject to empirical FDR control, and the training does not require any ground truth labels
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on the hypothesis. In fact, the intuition behind Algorithm 1 is very similar to the policy gradient descent
method popular in reinforcement learning, which aims to find the best policy that optimizes the rewards.
In an online multiple testing problem, we can regard the number of discoveries as reward and parametric
functions as policies.

Algorithm 1: Online FDR Control with a Context-Weighted GAI Procedure

Model the weight function as a multi-layer perceptron (MLP);

Input: A sequence of p-value, contextual feature vector pairs ((P1,X1), (P2,X2), . . . ), a monotone
GAI rule (such as LORD++) denoted by G with desired FDR control, batch size b, learning
rate η

Output: Neural network model parameter set θ ∈ Θ

Randomly initialize the parameter set θ0; batch index j = 0
repeat

for i = 1 to b do
Consider the pair (Pjb+i,Xjb+i) (ith hypothesis in the jth batch)
Let α̃ ← αjb+i(R1, . . . ,Rjb+i−1) (computed as defined by the GAI rule G)
Accept/reject this hypothesis, while satisfying GAI G, with significance level reweighed as
α̃ ⋅ ω(Xjb+i; θj)

end
Use the decisions in the jth batch to update the empirical discovery proportion (EDRj)
Compute the gradient with respect to the parameter set ∂EDRj

∂ θ

Update the parameter set: θj+1 ← θj + η
∂EDRj

∂ θ
j ← j + 1

until convergence or end-of-stream;
Return θj
In all our experiments, we use a multilayer perceptron to model the weight function, which is constructed

by 10 layers and 10 nodes with ReLU as the activation function in each layer, and exponential function of the
output layer, since the weight has to be non-negative. In the following, we use context-weighted LORD++
(CwLORD++) to denote the testing rule obtained from Algorithm 1 by using LORD++ as the monotone
GAI rule.

6.1 Experiments

In this section, we present results for numerical experiments with both synthetic and real data to compare the
performance of our proposed CwLORD++ testing rule with the current state-of-the-art online testing rule
LORD++ (Ramdas et al., 2017b). The synthetic data experiments are based on the normal means model,
which is commonly used in hypothesis testing literature for comparing the performance of various testing
procedures. Our real data experiments focus on a diabetes prediction problem and gene expression data
analyses. The primary goal of this section is to show the increased power (under FDR control) in online
multiple testing setup that can be obtained with our proposed contextual weighting in many real world
problems. Experiments with the SAFFRON procedure are presented in Appendix C.

6.1.1 Synthetic Data Experiments

For the synthetic data experiments, we consider the hypotheses H(T ) = (H1, . . . ,HT ) coming from the
normal means model. The setup is as follows: for t ∈ [T ], under the null hypothesis, Ht ∶ µt = 0, versus
under the alternative, µt = µ(Xt) is a function of Xt. We observe test statistics Zt = µt + εt, where εt’s are
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independent standard normal random variables, and thus the two-sided p-values are Pt = 2Φ(−∣Zt∣). For
simplicity, we consider a linear function µ(Xt) = ⟨β,Xt⟩ for β unknown to the testing setup. We choose
the dimension of the features Xt’s as d = 10 in all following experiments.
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Figure 2: The top rows plots the average of max FDP and TDR (power) for our proposed CwLORD++
and LORD++ as we vary the fraction of non-nulls (π1) under the normal means model. The nominal FDR
control level α = 0.1. The bottom row plots the same with varying nominal FDR levels. In this case, we set
the fraction of non-nulls π1 = 0.5. As mentioned in the text, the average of max FDP is an overestimate of
FDR.

We set the total number of hypotheses as T = 105. We generate each d-dimensional vector Xt i.i.d.
from N (0, σ2Id) with σ2 = 2 logT . The choice of the σ2 is to put the signals in a detectable (but not easy)
region. This is because under the global null hypothesis where Zt ∼ N (0,1) for all t = 1, . . . , T , we have
maxt∈[T ]Zt ∼

√
2 logT with high probability. Here, β is a deterministic parameter vector of dimension

d = 10, we generate the ith coordinate in β as βi ∼ Uniform(−2,2) and fix β throughout the following
experiments. Let πi denote the fraction of non-null hypotheses. For LORD++, we choose the sequence
of hyperparameters {γt} (where γt = 0.0722 log(t ∨ 2)/(t exp(

√
log t))) as suggested by (Javanmard &

Montanari, 2018).
In Figure 2, we report the maximum FDP and the statistical power of the two compared procedures as
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we vary the fraction of non-nulls π1 and desired level α. The average is taken over 20 repeats.
In the first set of experiments (Figures 2(a) and 2(b)), we set α = 0.1, and vary the fraction of non-nulls

π1 from 0.1 to 0.9. We can see that FDP of both rules (CwLORD++ and LORD++) are almost always under
the set level α = 0.1 and are decreasing with the increasing fraction of non-nulls. As expected, the power
increases with increasing π1, however the power of CwLORD++ uniformly dominates that of LORD++.

Note that we take the average of maximum FDP over 20 repeats, which is an estimate for E[sup FDP].
Due to the fact that E[sup FDP] ≥ supE[FDP] = sup FDR, the reported average of maximum FDP is
probably higher than the true maximum FDR. In Figure 2(a), we see that the average of maximum FDP is
almost always controlled under the black line, which means the true maximum FDR should be even lower
than that level. When π1 is really small (like 0.1), the number of non-nulls is too sparse to make a high
proportion of true discoveries, which leads to a higher average of maximum FDP that also have a higher
variance in Figure 2(a).

In the second set of experiments (Figures 2(c) and 2(d)), we vary the nominal FDR level α from 0.1
to 0.5. The fraction of non-nulls is set as 0.5. Again we observe while both rules have FDR controlled
under nominal level (the black line), and our proposed CwLORD++ is more powerful than the LORD++
with respect to the true discovery rate. On average, we notice about 3-5% improvement in the power with
CwLORD++ when compared to LORD++.

6.1.2 Diabetes Prediction Problem

In this section, we apply our online multiple testing rules to a real-life application of diabetes prediction.
Machine learning algorithms are now commonly used to construct predictive health scores for patients. In
this particular problem, we want a test to identify patients that are at risk of developing diabetes. A high
predicted risk score can trigger an intervention (such as medical follow-up, medical tests), which can be
expensive and sometimes unnecessary, and therefore it is important to control the fraction of alerts that
are false discoveries. That is, for each patient i, we form the null hypothesis Hi as the “patient will not
develop diabetes” versus its alternative. The dataset was released as part of a Kaggle competition5, which
contains de-identified medical records of 9948 patients (labeled as 1,2, . . . ). For each patient, we have
a response variable Y that indicates if the patient is diagnosed with Type 2 diabetes mellitus, along with
patient’s biographical information and details on medications, lab results, immunizations, allergies, and
vital signs. In the following, we train a predictive score based on the available records, and then will apply
our online multiple testing rule rules to control FDR on test set. Our overall methodology is similar to that
used by Javanmard & Montanari (2018) in their FDR control experiments on this dataset. We proceed as
follows. We construct the following features for each patient.

1. Biographical information: Age, height, weight, BMI (Body Mass Indicator), etc.
2. Medications: We construct TF-IDF vectors from the medication names.
3. Diagnosis information: We derive 20 categories from the ICD-9 codes and construct an one-hot encoded

vector.
4. Physician specialty: We categorize the physician specialties and create features that represents how many

times a patient visited certain specialist.
We regard the biographical information of patients as treated as contextual features. The choice of using
biographical information as context is loosely based on the idea of personalization common in machine
learning applications. Note that in theory, for our procedure, one could use other features too as context.

Second, we split the dataset into four parts Train1, comprising 40% of the data, Train2, 20% of the
data, Test1, 20% of the data and Test2, 20% of the data. The Train sets are used for training a machine
learning model (Train1) and for computing the null distribution of test statistics (Train2), which allows us

5http://www.kaggle.com/c/pf2012-diabetes

http://www.kaggle.com/c/pf2012-diabetes
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to compute the p-values in the Test sets. We first learn the neural network parameters in the CwLORD++
procedure in an online fashion by applying it to p-values in Test1, and then evaluate the performance of both
LORD++ and CwLORD++ on Test2. This process is explained in more detail below.

We note that our experimental setup is not exactly identical to that of Javanmard & Montanari (2018),
since we are using a slightly different set of features and data cleaning for the logistic regression model. We
also split the data to four subsets instead of three as they did, which gives less training data for the predictive
model. Our main focus, is to compare the power of LORD++ and CwLORD++, for a reasonable feature set
and machine learning model.

Training Process. We start by training a logistic model similar to (Javanmard & Montanari, 2018).6 Let
xi denote the features of patient i. We use all the features to model the probability that patient does not have
diabetes through a logistic regression model as

Pr[Yi = 0 ∣ x = xi] =
1

1 + exp(⟨β,xi⟩)
.

The parameter β is estimated from the Train1 set.

Construction of the p-values. Let S0 be the subset of patients in Train2 set with labels as Y = 0, and let
n0 = ∣S0∣. For each i ∈ S0, we compute its predictive score as qi = 1/(1 + exp(⟨β,xi⟩)). The empirical
distribution of {qi ∶ i ∈ S0} serves as the null distribution of the test statistic, which allows for computation
of the p-values. Explicitly, for each j in either Test1 or Test2 sets, we compute qTest

j = 1/(1+exp(⟨β,xj⟩)),
and construct the p-value Pj by

Pj =
1

n0
∣{i ∈ S0 ∶ qi ≤ q

Test
j }∣.

Smaller p-value indicates that the patient has higher risk of developing diabetes. We use the p-values com-
puted on the patients in Test1 to train the weight function in CwLORD++, and the p-values on the patients
in Test2 to the compare performance of CwLORD++ and LORD++. Note that the training of the neu-
ral network does not utilize the labels of the hypothesis in the Test1 set. Since the dataset does not have
timestamps of hypotheses, we consider an ordering of hypotheses in the ascending order of corresponding
p-values, and use this ordering for both LORD++ and CwLORD++. Note that, since the Train and Test sets
are exchangeable, the null p-values will be uniform in expectation (and asymptotically uniform under mild
conditions).

Online Hypothesis Testing Process and Results. We set the desired FDR control level at α = 0.2. The
set of hyperparameters {γt} is chosen as in the synthetic data experiments. For the patients in Test1 set, we
use their biographical information of patients as contextual features in the training process for CwLORD++
for learning the neural network parameters. We apply the LORD++ and CwLORD++ procedures to the
p-values in the Test2 set and compute the false discovery proportion and statistical power. Let T2 be the
set of patients in Test2 set. Note that for a patient in Test2 set, for both CwLORD++ and LORD++, the
p-values are identically computed from all the features (including the patient’s biographical information).
This generates a sequence of p-values (Pi)i∈T2 . Now, while LORD++ is applied to this p-value sequence
directly, CwLORD++ is applied to the sequence of (Pi,Xi) where Xi is the biographical information of
patient i ∈ T2. For CwLORD++, the neural network parameters are fixed in this testing over the Test2 set.

We repeat the whole process and average the results over 30 random splittings of the dataset. Ta-
ble 1 presents our final result. We can use biographical information again as contextual features in training

6Even though the chosen logistic model is one of the best performing models on this dataset in the Kaggle competition, in this
paper, we do not actively optimize the prediction model in the training process.



23

FDR Power
LORD++ 0.147 0.384

CwLORD++ 0.176 0.580

Table 1: Results from diabetes dataset with nominal FDR control level α = 0.2.

CwLORD++ because the p-values under the null are uniformly distributed, no matter which features are
used in logistic modeling. This guarantees that the p-values under the null are independent to any features,
which is the only condition we need to have a FDR control, assuming the p-values themselves are mutually
independent.

Notice that while FDR is under control for both procedures, the statistical power of CwLORD++ is
substantially more (about 51%) than LORD++. This improvement illustrates the benefits of using contextual
features for improving the power with FDR control in a typical machine learning setup. A possible reason for
the observed increase in power with CwLORD++ is that in addition to using the labeled data in the Train1
set for training a supervised model, CwLORD++ uses in an unsupervised way (i.e., without considering
labels) some features of the data in the Test1 set in its online training process with the intent of maximizing
discoveries.

One could also see the effect of training LORD++ on larger dataset. For example, previously we trained
LORD++ only on Train1 set (40% of the data) and we completely ignored the Test1 set for LORD++. Sup-
pose, we instead train logistic model for LORD++ (but not for CwLORD++) on the union of Train1 and
Test1 set to make the baseline method stronger, with the same splits of the datasets. With this change,
LORD++ has FDR at 0.143 and power at 0.427. While this is not completely a fair comparison for
CwLORD++ as we have now used more labeled data in training the logistic model for LORD++ than
CwLORD++, we observe that CwLORD++ still beats this stronger baseline with over 35% power increase.
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Figure 3: FDR and TDR results on diabetes dataset as we vary the nominal FDR level α. Note that the
power of CwLORD++ uniformly dominates that of LORD++, with an average improvement in power of
about 44%.

In order to further probe some of these improvements, we repeated the experiment with different nominal
FDR levels ranging from 0.1 to 0.5. The results (see Figure 3) demonstrate that our CwLORD++ procedure
achieves more true discoveries than the LORD++ procedure while controlling FDR under the same level.
The FDR is controlled exactly under the desired level starting around α ≥ 0.15, while it is close to the desired
level even when α is as small as 0.1. This phenomenon can also be observed in (Javanmard & Montanari,
2018), where the FDR is 0.126 for LORD under the target level α = 0.1. This is probably because both
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the experiments here and in (Javanmard & Montanari, 2018) do not adjust for the dependency among the
p-values, which violates the theoretical assumption behind the FDR control proof, and is more of a concern
when target α level is small.

6.1.3 Gene Expression Data

Our final set of experiments are on gene expression datasets. In particular, we use the Airway RNA-Seq and
GTEx datasets7 as also studied by (Xia et al., 2017). For both experiments, we use the original ordering of
hypotheses as provided in the datasets. Since we don’t know the ground truth, we only report the empirical
FDR and the empirical discovery rate number in the experiments.

In the Airway RNA-Seq data, the aim is to identify glucocorticoid responsive (GC) genes that modulate
cytokine function in airway smooth muscle cells. The dataset contains n = 33469 genes. The p-values are
obtained in regular two-sample differential analysis of gene expression levels. Log counts of each gene
serves as the contextual feature in this case. Figure 4 reports the empirical FDR and the discovery number.
We see that our CwLORD++ procedure make about 10% more discoveries than the LORD++ procedure.

In the GTEx study, the question is to quantify the expression Quantitative Trait Loci (eQTLs) in human
tissues. In the eQTL analysis, the association of each pair of single nucleotide polymorphism (SNP) and
nearby gene is tested. The p-value is computed under the null hypothesis that the SNP genotype is not
correlated with the gene expression. The GTEx dataset contains 464,636 pairs of SNP-gene combination
from chromosome 1 in a brain tissue (interior caudate). Besides the p-values from the correlation test,
contextual features may affect whether a SNP is likely to be an eQTL, and thus we can discover more of
the true eQTLs if we utilize them in tests. For the tests, we consider the three contextual features studied
by (Xia et al., 2017): 1) the distance (GTEx-dist) between the SNP and the gene (measured in log base-
pairs); 2) the average expression (GTEx-exp) of the gene across individuals (measured in log rpkm); and
3) the evolutionary conservation measured by the standard PhastCons scores (GTEx-PhastCons). We apply
LORD++ to the p-values, and CwLORD++ to the p-value, contextual feature vector pairs. Figure 5 reports
the empirical FDR and the discovery number. In GTEx 1D experiments, we use each contextual feature
separately in CwLORD++, which increases the discovery number by 5.5% (using GTEx-dist), 2.6% (using
GTEx-exp), 2% (using GTEx-PhastCons) compared to the LORD++ procedure. In GTEx 2D experiments,
GTEx-dist and GTEx-exp features are used together in CwLORD++ as a two-dimensional vector, and here
CwLORD++ procedure make about 6.1% more discoveries than the LORD++ procedure. In GTEx 3D
experiments, CwLORD++ uses all the three available features and makes about 6.6% more discoveries than
LORD++. These results indicate that additional contextual information could be helpful in making more
discoveries.

7Datasets are at: https://www.dropbox.com/sh/wtp58wd60980d6b/AAA4wA60ykP-fDfS5BNsNkiGa?dl=0.

https://www.dropbox.com/sh/wtp58wd60980d6b/AAA4wA60ykP-fDfS5BNsNkiGa?dl=0
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Figure 4: Results on Airway RNA-Seq dataset.
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Figure 5: Results on GTEx dataset.
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7 Conclusion

In this paper, we introduced a new, rich class of online testing rules which incorporates the available contex-
tual information in the testing process, and can control both the online FDR and mFDR under some standard
assumptions. We then focused on a subclass of these rules, based on weighting the significance levels using
contextual features, to derive a practical algorithm that learns a parametric weight function in an online
fashion to maximize the number of empirical discoveries. We also theoretically proved that under standard
informative-weighting assumptions, our procedure can achieve higher statistical power compared to a pop-
ular online FDR control procedure, while still controlling the FDR at the same level. Our experiments on
both synthetic and real datasets demonstrates the superior performance of our procedure compared to other
state-of-the-art online multiple testing procedures.
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A Missing Details from Section 3

Identifiability of f1(p ∣ X). We present a simple example from Lei & Fithian (2018) that illustrates why
f1(p ∣X) (distribution of p under the alternate) is not identifiable. Consider the following mixture model:

Ht ∣Xt
i.i.d.
∼ Bernoulli(π1),

Pt ∣Ht,Xt =

⎧⎪⎪
⎨
⎪⎪⎩

Uniform(0,1) if Ht = 0,

f1(p ∣Xt) if Ht = 1.

Now consider the conditional mixture density f(p ∣ X) = (1 − π1) + π1f1(p ∣ X). Note that the Ht’s
are not observed. Thus, while f is identifiable from the data, π1 and f1 are not: for example, π1 = 0.5,
f1(p ∣X) = 2(1 − p) and π1 = 1, f1(p ∣X) = 1.5 − p result in exactly the same mixture density f(p ∣X).

Lemma 2 (Lemma 1 Restated). Let g ∶ {0,1}T → R be any coordinatewise non-decreasing function such
that g(R) > 0 for any vector R ≠ (0, . . . ,0). Then for any index t ≤ T such that t ∈H0, we have

E [
1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}

g(R1, . . . ,RT ) ∨ 1
∣σ(F t−1 ∪ Gt)] ≤ E [

αt(R1, . . . ,Rt−1,X1, . . . ,XT )

g(R1, . . . ,RT ) ∨ 1
∣σ(F t−1 ∪ Gt)].

Proof. Let P = (P1, . . . , PT ) be the sequence of p-values, and X = (X1, . . . ,XT ) be the sequence of
the contextual feature vectors until sometime T . We define a “leave-one-out” vector of p-value as P̃−t =

(P̃1, . . . , P̃T ), which was obtained from P by setting Pt = 0, i.e.,
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P̃i =

⎧⎪⎪
⎨
⎪⎪⎩

Pi if i ≠ t,
0 if i = t.

Let R = (R1, . . . ,RT ) be the sequence of decisions on the input P and X, and R̃−t = (R̃1, . . . , R̃T ) be the
sequence of decisions by applying the same rule on the input P−t and X. Note here we just set one p-value
as zero but are not changing the contextual feature vectors.

By the construction of p-values, we have that Ri = R̃i for i < t, and hence

αi(R1, . . . ,Ri−1,X1, . . . ,Xi) = αi(R̃1, . . . , R̃i−1,X1, . . . ,Xi), for all i ≤ t.

We also know that R̃t = 1 always holds due to the fact P̃t = 0 ≤ αt. Therefore, if the event {Pt ≤

αt(R1, . . . ,Rt−1,X1, . . . ,Xt)} occurs, we have Rt = R̃t and thus R = R̃−t.
From the above arguments, we conclude that

1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}

g(R) ∨ 1
=
1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}

g(R̃−t) ∨ 1
.

Due to the fact that t ∈ H0 (Ht = 0), Pt is independent to all contextual features X by assumption (as
Pi’s and Xi’s are independent under the null), which gives that Pt is independent of σ(F t−1 ∪ Gt). And
since Pt is independent of R̃−t, we have,

E [
1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}

g(R) ∨ 1
∣σ(F t−1 ∪ Gt)]

= E [
1{Pt ≤ αt(R1, . . . ,Rt−1,X1, . . . ,Xt)}

g(R̃−t) ∨ 1
∣σ(F t−1 ∪ Gt)]

≤ E [
αt(R1, . . . ,Rt−1,X1, . . . ,Xt)

g(R̃−t) ∨ 1
∣σ(F t−1 ∪ Gt)] (22)

≤ E [
αt(R1, . . . ,Rt−1,X1, . . . ,Xt)

g(R) ∨ 1
∣σ(F t−1 ∪ Gt)] (23)

where inequality (22) follows by taking expectation with respect toPt and using conditional super-uniformity
(12), and inequality (23) is derived by the following observation.

Since P̃t = 0 ≤ αt, we have R̃t = 1 ≥ Rt. Due to the monotonicity of the significance levels, we have

αi(R̃1, . . . , R̃i−1,X1, . . . ,Xi) ≥ αi(R1, . . . ,Ri−1,X1, . . . ,Xi), for all i > t,

ensuring R̃i ≥ Ri for all i, and thus g(R̃−t) ≥ g(R) by the non-decreasing assumption on the function
g.

Theorem 5 (Theorem 1 Restated). Consider a sequence of ((Pt,Xt))t∈N of p-values and contextual fea-
tures. If the p-values Pt’s are independent, and additionally Pt are independent of all (Xt)t∈N under the
null (whenever Ht = 0), then for any monotone contextual generalized alpha-investing rule (i.e., satisfying
conditions (7), (8), (9), (10), and (11)), we have online FDR control,

sup
T

FDR(T ) ≤ α.

Proof. Note that the number of false discoveries is V (T ) = ∑
T
t=1Rt1{t ∈ H

0} and the amount of wealth is
W (T ) = w0 +∑

T
t=1(−φt +Rtψt).
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We can derive the following expression by using the tower property of conditional expectation

E [
V (T ) +W (T )

R(T ) ∨ 1
] =

T

∑
t=1

E [
Rt1{t ∈H

0} + w0

T − φt +Rtψt

R(T ) ∨ 1
]

=
T

∑
t=1

E [

w0

T +Rt(ψt + 1{t ∈H
0}) − φt

R(T ) ∨ 1
]

=
T

∑
t=1

E [E [

w0

T +Rt(ψt + 1{t ∈H
0}) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]] (24)

We split the analysis in two cases based on whether Ht = 0 or Ht = 1.

• Case 1: Suppose that t ∈H0. By applying Lemma 1, we have

E [
Rt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)] = E [

1{Pt ≤ αt}

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]

≤ E [
αt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]. (25)

Since ψt ≤
φt
αt
+ bt − 1, we further obtain

E [E [

w0

T +Rt(ψt + 1{t ∈H
0}) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]] ≤ E [E [

w0

T +Rt(
φt
αt
+ bt) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]]

= E [E [

w0

T +Rtbt +
φt
αt

(Rt − αt)

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]]

≤ E [E [

w0

T +Rtbt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]],

where the last inequality follows by applying (25).

• Case 2: Suppose that t /∈H0. Using the fact that ψt ≤ φt + bt, we have

E [E [

w0

T +Rt(ψt + 1{t ∈H
0}) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]] ≤ E [E [

w0

T +Rt(φt + bt) − φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]]

= E [E [

w0

T +Rtbt + (Rt − 1)φt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]]

≤ E [E [

w0

T +Rtbt

R(T ) ∨ 1
∣σ(F t−1 ∪ Gt)]].

Combining the bound on E [E [
w0
T
+Rt(ψt+1{t∈H0})−φt

R(T )∨1 ∣σ(F t−1∪Gt)]] from both cases in (24) and using the

definition of bt, we obtain that,

E [
V (T ) +W (T )

R(T ) ∨ 1
] ≤

T

∑
t=1

E [

w0

T +Rtbt

R(T ) ∨ 1
] = E [

w0 +∑
T
t=1Rtbt

R(T ) ∨ 1
]

≤ E [
w0 +∑

T
t=1Rtα −w01{T ≥ ρ1}

R(T ) ∨ 1
] = E [

w0 + αR(T ) −w01{T ≥ ρ1}

R(T ) ∨ 1
] ≤ α.

This concludes the proof of the theorem.



30

Theorem 6 (Theorem 2 Restated). Consider a sequence of ((Pt,Xt))t∈N of p-values and contextual fea-
tures. If the p-values Pt’s are conditionally super-uniform distributed (as in (??)) , then for any contextual
generalized alpha-investing rule (i.e., satisfying conditions (7), (8), (9), and (10)), we have online mFDR
control,

sup
T ∈N

mFDR(T ) ≤ α.

Proof. The conditional super-uniformity implies that under null

E [Rt∣σ(F
t−1

∪ G
t
)] ≤ αt.

Now using a proof technique similar to Theorem 5, for any T ∈ N, we get

E[V (T )] ≤ E[V (T ) +W (T )]

=
T

∑
t=1

E [Rt1{t ∈H
0
} +

w0

T
− φt +Rtψt]

=
T

∑
t=1

E [
w0

T
+Rt(ψt + 1{t ∈H

0
}) − φt]

=
T

∑
t=1

E [E [
w0

T
+Rt(ψt + 1{t ∈H

0
}) − φt∣σ(F

t−1
∪ G

t
)]]

≤
T

∑
t=1

E [E [
w0

T
+Rtbt∣σ(F

t−1
∪ G

t
)]]

= E [w0 +
T

∑
t=1

Rtbt] = E [w0 + αR(T ) −w01{T ≥ ρ1}]

≤ αE [R(T ) ∨ 1],

where for the second inequality we used an analysis similar to that used in the first case in the proof of The-
orem 5. Therefore, for any T ∈ N,

mFDR(T) =
E[V (T )]

E[R(T ) ∨ 1]
≤ α.

This concludes the proof of the theorem.

B Missing Details from Section 5

Proposition 3 (Proposition 1 Restated). Suppose that the weight distribution satisfies the informative-
weighting assumption in (16). Suppose that p-values Pt’s are independent, and are conditionally inde-
pendent of the weights ωt’s given Ht’s. Then the weighted LORD++ rule can control the online FDR at any
given level α, i.e.,

sup
T ∈N

FDR(T ) ≤ α.

Proof. We start with a frequently used estimator of FDR that is defined as:

F̂DP(T ) ∶=
∑
T
t=1 αt

R(T ) ∨ 1
.
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As established in Section 4 in Ramdas et al. (2017b), LORD++ applied to any sequence of p-values will en-
sure that supT F̂DP(T ) ≤ α. We apply LORD++ with the sequence of p-values defined asP ′ = (P1

ω1
, P2

ω2
, P3

ω3
. . . ).

Let P ′
t = Pt/ωt for any t ∈ N. Then it follows that,

sup
T ∈N

F̂DP(T ) = sup
T ∈N

∑
T
t=1 αt

R(T ) ∨ 1
= sup
T ∈N

∑
T
t=1 αt

(∑
T
t=1 1{P

′
t ≤ αt}) ∨ 1

≤ α. (26)

We denote the sigma-field of decisions based on the weighted p-valuesP ′ till time t as Ct = σ(R1, . . . ,Rt).
By using the “leave-one-out” method used in Theorem 5, the FDR of the weighted LORD++ at any time T
can be written as,

FDR(T ) = E [
∑
T
t=1 1{t ∈H

0 ∶ P ′
t ≤ αt}

(∑
T
t=1 1{P

′
t ≤ αt}) ∨ 1

]

=
T

∑
t=1

E [
1{t ∈H0 ∶ Pt

ωt
≤ αt}

R(T ) ∨ 1
]

=
T

∑
t=1

E [E [
1{t ∈H0 ∶ Pt

ωt
≤ αt}

R(T ) ∨ 1
∣C
t−1

]]

=
T

∑
t=1

E [E [
1{t ∈H0 ∶ Pt

ωt
≤ αt}

R−t(T ) ∨ 1
∣C
t−1

]],

where R−t(T ) = ∑
T
i=1 1{Pi/ωi ≤ αi} is obtained by setting Pt = 0, while keeping all ωt’s unchanged. The

last equality holds due to the fact that R−t(T ) = R(T ) given the event {Pt/ω ≤ αt}.
Since αt ∈ Ct−1, and Pt, ωt are independent of R−t(T ) and Ct−1, we can take the expectation of the

numerator inside the brackets and obtain that

Pr[Pt/ωt ≤ αt ∣ C
t−1,Ht = 0] = ∫ Pr[Pt/ωt ≤ αt ∣ C

t−1, ωt = w,Ht = 0]dQ(w ∣Ht = 0)

= ∫ wαtdQ(w ∣Ht = 0)

= u0αt,

where u0 = E[ω ∣Ht = 0]. Plugging this in the bound on FDR(T ) from above gives,

FDR(T ) =
T

∑
t=1

E [E [
u0αt

R−t(T ) ∨ 1
∣C
t−1

]]

≤
T

∑
t=1

E [E [
αt

R−t(T ) ∨ 1
∣C
t−1

]] (27)

≤
T

∑
t=1

E [E [
αt

R(T ) ∨ 1
∣C
t−1

]] (28)

= E [
∑
T
t=1 αt

R(T ) ∨ 1
] = E [F̂DP(T )] ≤ α,

where inequality (27) is due to the assumption that u0 < 1, (28) follows by the fact that R−t(T ) ≥ R(T ) due
to monotonicity of LORD++, and the last equality is based on (26).

Theorem 7 (Theorem 3 Restated). LetD(a) = Pr[P /ω ≤ a] be the above marginal distribution of weighted
p-values. Then, the average power of weighted LORD++ rule is almost surely bounded as follows:

lim inf
T→∞

TDR(T ) ≥ (
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj)))
−1.
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Proof. Since we are interested in lower bounds, we consider a version of LORD (as also considered in (Ja-
vanmard & Montanari, 2018)) which that is based on the following rule,

LORD:W (0) = w0 = b0 = α/2, φt = αt = b0γt−τt , ψt = b0.

Note that since bt = α−w01{ρ1 > t−1} > b0 in LORD++, the test level in LORD++ is at least as large to the
test level in LORD. Therefore, for any p-value sequence the power of the LORD from is also a lower bound
on the power of LORD++. In the rest of this proof, we focus on LORD for the weighted p-value sequence
{P1/ω1, P2/ω2, . . .}. The bound established below is in fact tight for LORD under this p-value sequence.

Denote by ρi as the time of the ith discovery (rejection), with ρ0 = 0, and ∆i = ρi − ρi−1 as the ith
time interval between the (i − 1)st and ith discoveries. Let ri ∶= 1{ρi ∈ H1} be the reward associated with
inter-discovery ∆i. Since the weighted p-values are i.i.d. it can be seen that the times between successive
discoveries are i.i.d. according to the testing procedure LORD, and the processR(T ) = ∑

T
l=1Rl is a renewal

process (Cox et al., 1967). In fact, for each i, we have

Pr[∆i ≥m] = Pr[∩ρi−1+ml=ρi−1
{Pl/ωl > αl}] =

ρi−1+m

∏
l=ρi−1

(1 −D(αl)) =
ρi−1+m

∏
l=ρi−1

(1 −D(b0γl−ρi−1)) =
m

∏
l=1

(1 −D(b0γl)).

The above expression is same for every i. Therefore,

E[∆i] =
∞

∑
m=1

Pr[∆i ≥m] =
∞

∑
m=1

m

∏
l=1

(1 −D(b0γl)).

Applying the strong law of large numbers for renewal-reward processes (Cox et al., 1967), we obtain
that the following statement holds almost surely,

lim
T→∞

1

T

R(T )

∑
i=1

ri =
E(ri)

E(∆1)
= π1(

∞

∑
m=1

m

∏
l=1

(1 −D(b0γl)))
−1.

Let ∣H1(T )∣ be the number of true alternatives till time T . Since limT→∞ ∣H1(T )∣/T = π1 almost surely,
we have

lim
T→∞

1

∣H1(T )∣
∑

i∈H1(T )

Ri = lim
T→∞

1

∣H1(T )∣

R(T )

∑
i=1

ri = (
∞

∑
m=1

m

∏
l=1

(1 −D(b0γl)))
−1.

Now by using the definition of TDP(T ), almost surely, we have that for any weighted LORD++,

lim inf
T→∞

TDP(T ) ≥ (
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj)))
−1.

As discussed above, this bound translates into a lower bound for weighted LORD++. Furthermore, by using
the Fatou’s lemma (Carothers, 2000), we can extend the same result for TDR(T ) almost surely,

lim inf
T→∞

TDR(T ) = lim inf
T→∞

E[TDP(T )] ≥ E[lim inf
T→∞

TDP(T )] ≥ (
∞

∑
m=1

m

∏
j=1

(1 −D(b0γj)))
−1.

Theorem 8 (Theorem 4 Restated). Suppose that the parameters in LORD (19) satisfy b0γ1 < a0, and the
weight distribution satisfies Pr[ω < a0/(b0γ1) ∣ Ht = 1] = 1 for every t ∈ N and the informative-weighting
assumption in (16). Then, the average power of weighted LORD is greater than equal to that of LORD
almost surely.
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Proof. We compare the average power bound of weighted LORD and LORD. It is equivalent to comparing
D(a) andG(a) for a = b0γl, for l = 1, . . . ,∞. Since u = (1−π1)u0+π1u1 = 1, we have (1−π1)u0 = 1−π1u1.
This means that

D(a) −G(a) = (1 − π1)u0a + π1∫ F (aw)dQ1(w) − (1 − π1)a − π1F (a)

= (1 − π1)(u0 − 1)a + π1(∫ F (aw)dQ1(w) − F (a))

= π1(1 − u1)a + π1(∫ F (aw)dQ1(w) − F (a)).

So we just need to compare (µ1 − 1)a and ∫ F (aw)dQ1(w) − F (a), for any a = b0γl, for l = 1, . . . ,∞.
Due to the fact that {γl} is a non-increasing sequence, we have a = b0γl ≤ b0γ1. Since b0γ1 < a0 and
Pr[ω < a0/(b0γ1) ∣H = 1] = 1 by assumption, then Pr[max(a, aw) < a0 ∣H = 1] = 1.

For any fixed a = b0γl > 0, we have

∫ F (aw)dQ1(w) − F (a)

a
= ∫

F (aw) − F (a)

a
dQ1(w)

= ∫
F (aw) − F (a)

(w − 1)a
(w − 1)dQ1(w)

= ∫ f(ξ)(w − 1)dQ1(w) (29)

≥ ∫ (w − 1)dQ1(w) (30)

= E[W ∣H = 1] − 1 = u1 − 1,

for some ξ ∈ (min(a, aw),max(a, aw)). Note we assume Q1 is a continuous distribution, so Pr[w = 1 ∣

H = 1] = 0. The equality (29) is achieved by applying the Intermediate Value Theorem, and the inequality
(30) is obtained by the fact that Pr[ξ < a0 ∣H = 1] = 1, i.e., Pr[f(ξ) > 1 ∣H = 1] = 1.

Therefore, we prove that ∫ F (aw)dQ1(w) − F (a) ≥ u1 − 1, which implies that D(a) ≥ G(a) for
a = b0γl, for l = 1, . . . ,∞.

C SAFFRON Procedure

Let us start with a quick introduction to the SAFFRON procedure proposed by Ramdas et al. (2018). Since
SAFFRON can be viewed as an online analogue of the famous offline Storey-BH adaptive procedure (Storey,
2002), we start a description of the Storey-BH procedure.

In the offline setting where p-values are all available, the rejection rule is to reject all p-values below
some threshold s, meaning thatR(s) = {i ∣ Pi ≤ s}. Thus an oracle estimate for FDP is given by

FDP∗(s) ∶=
∣H0∣ ⋅ s

∣R(s)∣ ∨ 1
.

The world oracle means that FDP∗ cannot be calculated, since H0 is unknown. The BH method overesti-
mates FDP∗(s) by the empirically computable quantity

F̂DPBH(s) ∶=
n ⋅ s

∣R(s)∣ ∨ 1
,

and chooses the threshold ŝBH(s) = max{s ∶ F̂DPBH(s) ≤ α}. However, Storey (2002) noted that the
estimate of F̂DPBH(s) is conservative, and thus proposed a different estimate (referred to as Storey-BH) as

F̂DPSt-BH(s) ∶=
n ⋅ s ⋅ π̂0
∣R(s)∣ ∨ 1

,
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where the fraction of nulls π̂0 is estimated by

π̂0 ∶=
1 +∑ni=1 1{Pi > λ}

n(1 − λ)
,

with a well-chosen λ. There is a bias-variance trade-off in the choice of λ. When λ grows larger, the
bias of π̂0 grows smaller while the variance becomes larger. Through numerical simulations Storey (2002)
demonstrated that there could be an increase in power (over the BH procedure) with this adaptivity.

Similarly, in the online setting, the oracle FDP estimate now is

FDP∗(T ) ∶=
∑t∈[T ],t∈H0 αt

R(T ) ∨ 1

The connection between SAFFRON and LORD/LORD++ is the same as that between Storey-BH and BH.
Empirically, LORD/LORD++ overestimates the oracle FDP∗(T ) as

F̂DPLORD(T ) ∶=
∑t∈[T ] αt

R(T ) ∨ 1

SAFFRON estimates the amount of alpha-wealth that was spent testing nulls so far, which is analogous to
the proportion of nulls in the offline setting, and controls the following overestimate of oracle FDP,

F̂DPSAFFRON(T ) ∶=
∑t∈[T ] αt

1{Pt>λt}
(1−λt)

R(T ) ∨ 1
,

where {λt}
∞
t=1 is predictable sequence of user-chosen parameters in interval (0,1). Note that when λt = 0,

it recovers F̂DRLORD(T ). Ramdas et al. (2018) proved that, under some constraints, SAFFRON can control
online FDR at given level α by showing that

FDR(T ) ≤ E[F̂DPSAFFRON(T )].

However, when we extend SAFFRON to incorporate contextual features, due to the optimization prob-
lem that we solve in Algorithm 1, it seems difficult to ensure FDR control in practice. The possible reason
here is analogous to overfitting in machine learning, due to the bias-variance tradeoff inherent in the SAF-
FRON estimator. When λt’s is set large, the bias of the estimator becomes smaller but then the variance
increases. And when we optimize an FDR estimator with large variance in the training process (mean-
ing the precision of FDR estimator is poor), we will lose FDR control in the validation process, just like
overfitting.

We still present some empirical evidence that contextual information could help with SAFFRON too,
though one has to be careful about FDR control.

Experiments with SAFFRON. We consider exactly the same setting as with the synthetic data experi-
ments in Section 6.1.1, and train a context-weighted SAFFRON (referred to as CwSAFFRON) in the same
way as CwLORD++. With varying fraction of non-nulls, Figure 6 reports the maximum FDP and statistical
power (TDP) of CwSAFFRON along with three other procedures, SAFFRON, CwLORD++, and LORD++.
We observe that SAFFRON and CwSAFFRON have FDR greater than the nominal level of 0.1 when the
fraction of non-nulls π1 is small (less than 0.3), but is below the nominal level when π1 gets larger. And the
FDR of both LORD++ and CwLORD++ are generally much smaller than that of SAFFRON and CwSAF-
FRON. This is consistent with our discussion about SAFFRON in Section 2. On the other hand, the power
of CwSAFFRON dominates that of SAFFRON for all π1, and is larger than that of CwLORD++ when π1
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exceeds 0.3. As the fraction of non-nulls increases, CwSAFFRON achieves a faster increase in power than
CwLORD++. A similar phenomenon can be also seen between SAFFRON and LORD++ (which was also
noted by Ramdas et al. (2018)).
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Figure 6: The average of max FDP and TDR (power) for our proposed CwSAFFRON, CwLORD++, along
with SAFFRON and LORD++ with varying the fraction non-nulls (π1) under the normal means model. The
nominal FDR control level α = 0.1. As mentioned in the description of the synthetic data experiments, the
average of max FDP is an overestimate of FDR.
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