From Guess2Graph: When and How Can Unreliable Experts Safely
Boost Causal Discovery in Finite Samples?

Sujai Hiremath!'*, Dominik Janzing?, Philipp Faller3,
Patrick Blsbaum?, Elke Kirschbaum?, Shiva Prasad Kasiviswanathan?, Kyra Gan'
!Cornell Tech, ?Amazon, *Karlsruhe Institute of Technology

Abstract

Causal discovery algorithms often perform
poorly with limited samples. While integrat-
ing expert knowledge (including from LLMs)
as constraints promises to improve perfor-
mance, guarantees for existing methods re-
quire perfect predictions or uncertainty esti-
mates, making them unreliable for practical
use. We propose the Guess2Graph (G2G)
framework, which uses expert guesses to
guide the sequence of statistical tests rather
than replacing them. This maintains statis-
tical consistency while enabling performance
improvements. We develop two instantia-
tions of G2G: PC-Guess, which augments the
PC algorithm, and gPC-Guess, a learning-
augmented variant designed to better lever-
age high-quality expert input. Theoretically,
both preserve correctness regardless of expert
error, with gPC-Guess provably outperform-
ing its non-augmented counterpart in finite
samples when experts are “better than ran-
dom.” Empirically, both show monotonic im-
provement with expert accuracy, with gPC-
Guess achieving significantly stronger gains.

1 Introduction

Global causal discovery provides a principled frame-
work for inferring causal graphs from observational
data, with algorithms that are asymptotically cor-
rect and statistically well-characterized (Spirtes et al.,
2000). In finite samples, however, these guarantees fail
to hold (Uhler et al., 2013), and performance tends to
degrade substantially with insufficient data (Zuk et al.,

*Work done during an internship at Amazon Research
Tiibingen.

2012). As a result, discovery in real-world applications
often yields unstable (Faller et al., 2024) or inaccurate
(Brouillard et al., 2025) graphs, which contradict es-
tablished domain knowledge (Maasch et al., 2024).

Ezxpert-aided discovery methods often mitigate finite-
sample issues by incorporating domain knowledge, en-
coding such knowledge as either hard constraints that
prune the search space (Ankan and Textor, 2025) or as
soft priors that bias the results of statistical tests (Con-
stantinou et al., 2023). Classical expert-aided methods
rely on human experts to specify much of the con-
straint (Tennant et al., 2021; Petersen et al., 2021);
however, as graph size grows, this dependence on hu-
man input becomes cognitively infeasible and econom-
ically unsustainable. Large language models (LLMs),
trained on vast and diverse corpora, encode broad do-
main knowledge, suggesting they could serve as scal-
able proxies for human experts. Much like a domain
expert reasoning about plausible causal mechanisms,
an LLM can parse variable names and draw on its
internalized knowledge to propose causal constraints,
potentially reducing reliance on exhaustive statistical
testing. Their promise in retrieving known direct re-
lationships (Feng et al., 2025) and ancestral orderings
(Vashishtha et al., 2025) make them a compelling al-
ternative, spurring research into their use as expert
replacements for causal discovery (Ban et al.; Cohrs
et al., 2024; Darvariu et al., 2024; Xie et al., 2024;
Kiciman et al., 2024; Vashishtha et al., 2025).

Yet neither human experts nor LLMs are infallible
sources of causal knowledge. Human input is prone
to bias and inconsistency (Dror, 2020), while LLMs
exhibit critical limitations: they often output invalid
graphs (Jiralerspong et al., 2024), are brittle to prompt
variations (Ban et al.), degrade with increasing com-
plexity (Sun and Li, 2024), perform poorly on out-of-
distribution domains (Feng et al., 2025), produce unre-
liable reasoning (Ye et al., 2024; Dong et al., 2024), as
well as poor uncertainty calibration (Manggala et al.,
2025). Given the potential for error, traditional meth-
ods that leverage such unreliable experts to generate

From Guess2Graph

hard or soft constraints lack theoretical guarantees
(Wu et al., 2025)—this means that misleading advice
can cause error (sometimes unbounded error, see Ap-
pendix A.1) even in the large sample limit, rendering
them unsuitable for safety-critical applications. To ad-
dress this, we argue that expert guidance should not
replace statistical procedures, but rather, complement
them to tmprove finite-sample efficiency without sac-
rificing worst-case guarantees.

This principle directly motivates our two core research
questions. First, we ask: What formal framework en-
sures that integrating an unreliable expert never harms,
and may improve, algorithmic performance? FEstab-
lishing this framework, however, reveals a second crit-
ical challenge. The rigid, statistically-optimized archi-
tectures of many high-performance algorithms (e.g.,
the PC algorithm’s fixed-size conditioning set itera-
tion) inherently resist external guidance. This leads
to our second question: How can we redesign such al-
gorithms to become more receptive to this framework,
thereby unlocking greater performance gains from ac-
curate expertise?

Contributions This work introduces a principled
approach for leveraging fallible experts in causal dis-
covery, addressing the dual challenges of when such
guidance is safe and how to best implement it. Our
contributions are fourfold:

e A Framework for Expert-Guided Causal Dis-
covery: We introduce the Guess2Graph (G2G)
(Sec. 3) framework, which enables causal discovery
algorithms to incorporate expert predictions while
guaranteeing statistical consistency (C1), providing
a pathway to achieve monotonic improvement (C2)
and finite-sample robustness (C3). G2G uses ex-
pert predictions to guide test sequences rather than
outcomes, requiring no uncertainty quantification.
We provide the theoretical foundation for instanti-
ating G2G in constraint-based algorithms through
subroutine modification (Sec. 4).

e PC-Guess: We instantiate G2G in the PC algo-
rithm (Sec. 5.1) to create PC-Guess (Alg. 5), which
maintains C1 while partially achieving C2 and C3
through per-iteration performance guarantees. We
prove that when starting from identical states, each
iteration of PC-Guess shows provable improvement
over standard PC with experts ‘better than random’
(Thm. 5.2), though cascading effects prevent end-to-
end guarantees.

e Augment PC for Better Expert Guidance
(gPC-Guess): We demonstrate that the rigid, sta-
tistically optimized structure of PC limits the poten-
tial gains from expert guidance (Sec. 5.2). To over-
come this, we propose a redesigned algorithm, gPC-
Guess (Alg. 6), which modifies PC’s core procedure

to be more susceptible to expert input. This ap-
proach fully achieves all three criteria C1-C3, with
provable end-to-end finite-sample performance im-
provements that increase monotonically with expert
quality (Thms. 5.1, 5.3).

e Empirical Validation and Insights: Our exper-
iments (Sec. 6) validate the theoretical distinction
between algorithm augmentation and redesign for
expert guidance. PC-Guess shows modest gains (up
to 5%) limited by PC’s inherent rigidity. In con-
trast, gPC-Guess fully achieves all three criteria,
with up to 30% performance gains when experts are
accurate, across both synthetic and real-world data.
These results persist with LLM experts, confirming
that full achievement of our criteria requires algo-
rithmic redesign rather than simple augmentation.

2 Related Work

Global Causal Discovery Global causal discovery
methods—constraint-based, score-based, and func-
tional causal model (FCM) based—all face finite-
sample challenges from error propagation in sequential
statistical tests. Constraint-based methods perform
conditional independence tests (Spirtes et al., 2000;
Spirtes and Glymour, 1991; Spirtes, 2001; Lee et al.,
2025), score-based methods make sequential edge com-
parisons (Chickering, 2002), and FCM methods con-
duct residual independence tests (Zhang and Hyvari-
nen, 2009; Hiremath et al., 2024), all suffering from
diminishing test power in super-exponential search
spaces (Lee et al., 2025; Chickering, 2020). While prior
work addressed this by eliminating order-dependence
(i.e., PC-Stable (Colombo and Maathuis, 2014)), we
instead optimize test sequences using expert predic-
tions. This approach applies broadly since sequential
testing underlies these constraint-based, hybrid score-
based (Tsamardinos et al., 2006; Chickering, 2020; Zhu
et al., 2024), and hybrid FCM methods (Peters et al.,
2014; Hiremath et al., 2025) (Appendix A.2).

Expert-Aided Discovery Existing frameworks for
integrating expert predictions into causal discovery
face two primary challenges. Direct hard or soft
constraint-based approaches (Ban et al., 2023; Su-
santi and Faber, 2025; Takayama et al., 2025) use
expert outputs to replace or bias statistical proce-
dures, risking unbounded error propagation with in-
correct experts (Hasan and Gani, 2024) and suffering
from poorly calibrated confidence scores (Campbell
and Moore, 2024; Wu et al., 2025). Guidance-based
approaches (Constantinou et al., 2023; Wu et al., 2025;
Ejaz and Bareinboim, 2025) use predictions for algo-
rithm guidance without replacing tests, but provide
limited benefits—initialization helps only with near-
perfect experts, while heuristic guidance lacks perfor-

From Guess2Graph

mance guarantees. Both approaches rely on empirical
validation rather than robust statistical foundations,
limiting reliability (Appendix A.3).

Algorithms with Predictions Our work builds
on the algorithms with predictions or the learning-
augmented algorithms paradigm (Mitzenmacher and
Vassilvitskii, 2020), which integrates predictions into
classical algorithms to improve performance while pre-
serving worst-case guarantees. In online settings where
data or requests arrive sequentially, this approach
provides approximation ratios guarantees via consis-
tency (near-optimal performance with accurate pre-
dictions) and robustness (bounded worst-case perfor-
mance with poor predictions) (Lykouris and Vassilvit-
skii, 2018; Wei and Zhang, 2020; Jin and Ma, 2022;
Liu et al., 2024). In offline settings, it reduces compu-
tational or query complexity while maintaining guar-
antees (Kraska et al., 2018; Lykouris and Vassilvitskii,
2021; Balcan et al., 2021; Chen et al., 2022). We adapt
this framework to causal discovery by using expert pre-
dictions to optimize statistical test sequences, primar-
ily targeting improved estimation accuracy rather than
computational benefits. While learning-augmented
methods have been applied to causal intervention de-
sign (Choo et al., 2023), ours is the first adaptation to
purely observational causal discovery.

3 Problem Setup and Guess2Graph

Unless otherwise mentioned, we denote random vari-
ables by lowercase letters and sets of variables by
uppercase letters. A directed acyclic graph (DAG)
G = (V,E) consists of nodes V and edges E. We
use e;; to denote the directed edge from z; to x;
and n;; to denote the undirected edge between x;
and z;, regardless of whether these edges exist in G.
The model is defined by structural equations: for each
x; €V, x; = f(Pa(x;),e;), with jointly independent
noise terms €.

The skeleton S of G is its undirected version. For any
partial skeleton C, let adj(C,z;) be the adjacency of
z; in C, and adj_;(C,z;) = adj(C,x;) \ {z;} be the
adjacency set excluding z;. Let [A]; denote all size-k
subsets of set A, and [Al];, = ¥ [A];. A conditional

independence test (CIT), CIT(x,glAZ), tests the null
hypothesis that z 1L y|Z. An edge ordering O is a
sequence of undirected edges, while a subset list L is a
sequence of variable subsets. Finally, a domain expert
(or LLM) is modeled as a predictor ¢ that, given a set
of variables V, outputs a prediction ?, while a causal

discovery algorithm outputs a prediction G.

3.1 Problem Statement and Design Criteria

We consider the problem of causal discovery from a
finite-sample dataset X', generated by some underly-

ing causal system. Under the standard assumptions
(Markov condition, acyclicity, faithfulness, and causal
sufficiency, Def.s B.1-B.4), there exists a true causal
DAG G* that perfectly characterizes the conditional
independence structure via d-separation (Def. B.5),
and all direct common causes of variables in V' are
contained within V.

In practice, finite-sample conditional independence
tests are error-prone, making exact recovery of G* chal-
lenging. We address this by augmenting causal discov-
ery with predictions from an expert ¥. While inspired
by learning-augmented algorithms, our setting differs
in two key aspects: 1) we face statistical (not adversar-
ial) data, with potentially adversarial expert quality,
and 2) we require no uncertainty quantification and
treat experts as a black box (unlike typical learning-
augmented approaches that require tunable confidence
parameters). This yields three key criteria:

C1 Statistical Consistency: As sample size grows,
the recovery of the true graph is guaranteed, re-
gardless of expert quality: lim,, o P[G = G*] = 1.

C2 Monotonic Improvement: The algorithm’s
finite-sample performance improves monotoni-
cally with expert accuracy.

C3 Finite-Sample Robustness: There exists an
expert accuracy threshold such that, for finite
samples, the algorithm’s performance with expert
guidance is not worse in expectation than without
it when expert accuracy exceeds this threshold.

Criterion C1 ensures the algorithm remains funda-
mentally sound even with poor experts, while C3 en-
sures practical utility with sufficiently accurate ex-
perts. Criterion C2 connects these guarantees, en-
suring a smooth transition between regimes. We note
that traditional frameworks for incorporating expert
knowledge as hard or soft constraints violate C1, as
we illustrate in Appendix A.3.

3.2 Guess2Graph Framework

We now propose our Guess2Graph (G2G) framework,
which enables algorithms to satisfy our three criteria
by strategically incorporating expert guidance while
maintaining statistical foundations. The core insight
is that many causal discovery algorithms contain sub-
routines that perform sequences of statistical tests, of-
ten with orders sampled uniformly at random. In sub-
routines where any valid sequence maintains asymp-
totic consistency, we can replace random sampling
with expert-guided ordering while preserving theoret-
ical guarantees.

The G2G framework operates in three steps: (1) iden-
tify a subroutine of an asymptotically correct causal
discovery algorithm that performs sequences of statis-

From Guess2Graph

Expert Initial
Graph Guess

Subroutine’s Random
Test Sequence

’ 1. Test z1 1L x3|xo ‘

’2. Test z2 1L x3]21 ‘

/ ’3A Test z1 1L xa|xs ‘

G2G’s Reordered
Test Sequence

Discovered Graph

’ 1. Test z1 1L za|xs ‘

Causal
’2. Test za L x3]a: ‘ Discovery

’3. Test x1 AL z3|z2 ‘

Figure 1: Guess2Graph uses expert graph predictions
to reorder test sequences in causal discovery subrou-
tines. Example above for constraint-based discovery.

tical tests; (2) request expert v to predict a causal
structure G; and (3) extract and use an ordering from
G in place of random sampling. This approach auto-
matically ensures statistical consistency (C1) by keep-
ing all decisions grounded in test outcomes rather than
expert judgments.! However, achieving monotonic im-
provement (Criterion C2) and finite-sample guaran-
tees (Criterion C3) requires careful algorithmic design
within this framework.

Although the framework is general, i.e., applicable
to any discovery algorithm maintaining consistency
across test sequences, extracting effective orderings re-
quires careful analysis of each subroutine’s role. We
therefore focus on constraint-based methods in this
paper, with extensions to score-based and FCM-based
algorithms discussed in Appendices C.2 and C.3.

Next, in Section 4, we demonstrate how this frame-
work can be applied to constraint-based algorithms by
identifying common subroutines that can incorporate
learning augmentation. In Section 5, we show how the
framework can be applied to the PC algorithm to par-
tially achieve C2 and C3. By further modifying PC
to create our gPC-Guess variant, we show that both
C2 and C3 can be fully achieved.

4 G2G in Constraint-Based Discovery

In this section, we instantiate the G2G framework for
constraint-based methods (Spirtes, 2001). We focus
specifically on skeleton discovery for three reasons: it
bears the primary computational burden, suffices for
many causal tasks, and improvements propagate to
edge orientation since orientations derive from skeleton
tests. We observe that skeleton discovery decomposes
into two core subroutines that rely on uniformly sam-

While we focus on deterministic predictions, G2G can
be extended with expert selection/validation (App. C.1).

Subroutine 1 Edge Loop (EL)

1: Input: Current skeleton C, edge ordering O, con-
ditioning set sizes [kmin, - - - , Kmax], Subset ordering
L, validity rule R, EP subroutine
for k = kpin to kmax do
for each undirected edge n; ; in order O do
if R(C,e;;,k) then
C«+ EP(C, €ijs k, L)
end if
end for
end for
return C

pled orderings: Edge Prune (EP) and Edge Loop (EL).
The EP subroutine (Subroutine 1) tests edge e; ; with
conditioning sets of size k following subset ordering L.
The EL subroutine (Subroutine 2) sequences edge test-
ing following edge ordering O while iterating through
conditioning set sizes, from kpi, to kmax, calling EP
for each k. For example, in the PC algorithm, ki,
and k. are both set to £ in iteration £. In PC, an
edge e; ;j is considered valid in iteration £ if n; ; remains
in the current skeleton C and the adjacency set of x;
(excluding z;) is sufficiently large to test conditioning
sets of size { (i.e., [adj_;(C,z;)| > ¢). PC calls the
EL subroutine up to |V| times. Different constraint-
based algorithms vary in their invocation of these sub-
routines and validity rules R. See Appendix C.4 for
further decomposition details.

Under oracle conditional independence tests, EL and
EP produce identical results regardless of orderings
O,L when starting from a complete graph (Lem-
mas D.1, D.2). However, with finite-sample errors,
orderings critically impact performance (Colombo and
Maathuis, 2014): edge removals update the skeleton,
changing adjacency sets for subsequent tests. While
PC-Stable (Colombo and Maathuis, 2014) addresses
this by batching edge removals, we leverage this order-
dependence for guidance. We develop modified sub-
routines that use expert predictions to generate O, L
by prioritizing edges and subsets the expert considers
relevant, rather than using uniform random orderings.

4.1 A Tractable Metric for Analyzing
Ordering Effects

To analyze how orderings affect algorithm perfor-
mance, we require a metric that captures correctness
while remaining analytically tractable. We evaluate
algorithm performance by the probability of perfect
recovery of the true skeleton §*. For any candidate
skeleton C produced by the algorithm, perfect recov-
ery occurs when C and S* are identical on all edges.
For each edge n; ; (undirected, or directed with e; ;),

From Guess2Graph

Subroutine 2 Edge Prune (EP)

Subroutine 3 Edge Loop Guess (EL-G)

1: Inputs: Current skeleton C, directed edge e; j,
conditioning set size k, subset ordering L

2: Let A < adj_;(C,z;)

3: for each subset W € [A]; in order L do

4: if CIT(x;,z; | W) returns independent then
5: Remove n; ; from C

6: return C

7 end if

8: end for

9: return C

we define the correctness indicator:
Yniﬂ. =]l{nm- S C/\ni,j S S*}Jr]l{nm ¢ C/\’I'Li’j ¢ S*}

This indicator equals 1 when the edge n; ;’s status in
C matches the ground truth in &*, and 0 otherwise.
The perfect recovery probability is then defined as:

H Y., =11,

N jiFE]

=P

representing the probability that all edges are correctly
specified.

This metric has two key analytical advantages. First,
the perfect recovery probability factors into a product
of conditional probabilities along the edge ordering O
used by the algorithm. Abusing the notation, if edges
are processed in order ni,no, ..., Ny, then:

®=P(Y,, =1)-P(Y,, =1|V,, =1)---
P(Y,, =1Y,, =1,--- .Y, ., =1). (1)

This factorization enables compositional analysis by
studying the algorithm’s behavior sequentially. Sec-
ond, perfect recovery avoids error propagation entirely.
Error propagation is difficult to analyze because false
positive and false negative errors have opposing effects
on adjacency sets—false positives inflate them while
false negatives shrink them. This makes the overall
impact of different errors dependent on the underly-
ing graph structure, rendering the analysis of error-
tolerant metrics (e.g., E[} Yy,]) challenging without
graph-specific assumptions (Appendix C.5).

4.2 Guiding Edge Loop

We now apply this metric to develop a principled ap-
proach for guiding EL (Subroutine 1). We start by
characterizing how edge orderings affect the perfect
recovery probability. This enables us to identify order-
ing modifications that provably improve this metric for
any underlying graphical structure. We demonstrate
that leveraging an expert to guide these modifications
leads to monotonic improvement with expert accuracy.

1: Inputs: Current skeleton C, expert graph G , con-
ditioning set sizes [kmin, - - - » kmax], Subset ordering
L, validity rule R, EP subroutine

2: Extract skeleton § from G. Randomly order C,
thenset O =C\S+CNS

3: return EL(C, O, [kmin, - - -, kmax), L, R, EP)

Graph-independent Ordering Principles. Build-
ing on our perfect recovery metric ¢, we investigate
ordering principles that improve ® regardless of the
underlying graph structure. Specifically, we analyze
when correctly specifying edge n; ; first increases the
probability of correctly specifying edge ng4, 5 second—
ie, when P(Y,, , =1|Y, =1)>PY,, 6 =1).

Ng,h Ng,h

The key insight is an asymmetry in how false versus
true edge decisions affect subsequent tests: correctly
removing false edges reduces adjacency sets (simplify-
ing future tests), while correctly retaining true edges
leaves adjacency sets unchanged. Combined with the
fact that true edges become easier to retain with
smaller adjacency sets (Lemma D.3), this implies that
removing false edges first can only increase the prob-
ability of correctly retaining subsequent true edges,
while retaining a true edge first does not affect the suc-
cess probability of removing a false edge (Lemma D.4).

By placing false edges before true edges in O, we can
only increase the perfect recovery probability ®, which
we formalize in Lemma D.5: for any ordering O, swap-
ping adjacent edges to place a false edge before a true
edge is never worse and sometimes strictly better.

Expert-guided Algorithm with Monotonicity
Guarantees. Based on Lemma D.5, we modify the
EL subroutine to incorporate expert predictions as
shown in Subroutine 3. The algorithm operates as fol-
lows: given an expert graph G, it extracts the skeleton
§ and partitions the current skeleton C into edges the
expert believes are false (C\ S) and true (CNS), then
processes the false edges before the true edges while
maintaining random order within each group.

We make the assumption that the expert v acts as
a symmetric binary channel: for any edge n; ;, the
expert independently predicts if it exists in the true
skeleton S* with accuracy p,. Under this assumption,
we establish the following monotonicity guarantee:

Lemma 4.1 (Monotonicity of Perfect Recovery in Ex-
pert Accuracy). For a fized partial skeleton C and true
DAG G*, let ®gr-g(py) denote the perfect recovery
probability when we sample an expert graph § from
expert ¥ with accuracy py, draw n samples from G*,
and run EL-G. Then E[®gr.q(py)] increases mono-

From Guess2Graph

tonically with py, strictly increasing when C contains
false edges adjacent to true edges.

Proof sketch. The proof (App. D.6) establishes
monotonicity via a coupling argument between ex-
perts with accuracies py, < py,. Both experts observe
the same true skeleton S* and use identical random-
ness for edge classification, but the higher-accuracy
expert makes fewer errors. This ensures that every
edge correctly classified by the weaker expert is also
correctly classified by the stronger expert. Conse-
quently, the better expert’s edge ordering has fewer
“inversions” (true edges incorrectly placed before false
edges). These orderings are related by the weak
Bruhat order, meaning the better ordering can be ob-
tained through a sequence of adjacent swaps that move
false edges leftward past true edges. By Lemma D.5,
each such swap weakly improves the perfect recov-
ery probability ®Pgr.g, with strict improvement when
swapped edges share vertices (since removing false
edges first shrinks adjacency sets and reduces false neg-
ative probabilities). Since the better expert’s order-
ing is reachable through beneficial swaps, it achieves
pointwise improvement for any fixed realization of data
and expert predictions. Strassen’s Coupling theorem
then implies that ®gr.q(py,) stochastically dominates
®gr.-c(py,), yielding the monotonicity in expectation.

4.3 Guiding Edge Prune

We now develop a principled approach to guiding EP
(Subroutine 2). Unlike EL, where ordering affects ac-
curacy, EP’s ordering only impacts runtime, which
can also be decreased by leveraging expert predictions.
Since our focus is on accuracy improvements through
expert guidance, we briefly outline how expert pre-
dictions can accelerate EP by prioritizing promising
conditioning sets, and defer the complete theoretical
analysis of runtime to Appendix E.

The EP subroutine requires an ordering L to sequence
conditional independence tests for edge e; ;. Given
adjacency set adj_;(C,z;) and conditioning set size
k, let CITyy (e = {CIT(zpa; | W) @ W C
adj_;(C,z;),|W| = k} denote all possible indepen-
dence tests of size k. Since EP removes an edge only
if any test in CITZdj,j(c,zi) returns independence, and
the timing of test execution does not affect test out-
comes, the edge recovery accuracy P(Ye,, = 1) re-
mains constant across all orderings (Lemma D.6).

Although EP orderings cannot affect accuracy, they
can impact computational runtime (Lemma D.7). Or-
derings that place d-separating sets of xz;,z; earlier
achieve lower expected runtimes (Lemma D.8). We
therefore guide EP by prioritizing conditioning sets
predicted to d-separate x;, z; according to the expert’s

Subroutine 4 Edge Prune Guess (EP-G)

1: Inputs: Current skeleton C, directed edge e; j,
conditioning set size k, expert graph G

2: Let A < adj_;(C,z;)

3: Extract all d-sep. sets ﬁij from G. Randomly
order [Alk, then set L = [A]x N ﬁij + [A]k \13”

4: return EP(C, e, 5, k, L)

Algorithm 5 PC-Guess

1: Inputs: Expert ¢, complete skeleton C

2: O, L «+ Subroutine F.1(¢, C)

3: Define RS (C,e; ;) =n;; € CA ladj_;(C, x;)| > £
4: for {=0tod—1do

5: C + EL(C, O, [¢, 4], L, RS, EP)

6: if no edges satisfy R%. then break

7: end for

8: return C

graph QA7 as formalized in Subroutine 4.

We make similar assumptions in d-separation predic-
tion analogously to edge prediction: the expert acts as
a binary symmetric channel with accuracy pq.sep for
identifying d-separating sets. Under a common tech-
nical condition (Definition E.1) from testing literature
(Brown and Tsamardinos, 2008; Li and Wang, 2009;
Strobl et al., 2019), a coupling argument similar to
Lemma 4.1 shows that EP-Guess’s expected runtime
decreases monotonically with pgsep (Lemma D.9).

5 Expert Augmented Algorithms

We introduce PC-Guess (Alg. 5, Section 5.1) and
gPC-Guess (Alg. 6, Section 5.2), which implement the
expert-guided framework from Section 4 using a uni-
fied extraction subroutine (Subroutine F.1) that gen-
erates both orderings O and L from G. We provide
theoretical guarantees in Section 5.3.

5.1 PC-Guess

We instantiate the G2G framework as PC-Guess
(Alg. 5), which modifies PC’s skeleton discovery by
integrating expert guidance through orderings O and
L from Subroutine F.1. The algorithm then iterates
through conditioning set sizes {, at each stage calling
EL with validity rule R% that determines whether an
edge qualifies for testing by checking two conditions:
(1) the edge remains in the current skeleton C, and (2)
at least one endpoint’s adjacency set (excluding the
other endpoint) has size at least ¢ to enable condition-
ing sets of size £.

PC-Guess inherits PC’s iterative structure for process-
ing conditioning sets, which constrains how expert pre-

From Guess2Graph

Algorithm 6 Guided PC (gPC-Guess)

Inputs: Expert v, complete skeleton C
O, L + Subroutine F.1(¢, C)

Define Rgpc(c, ei,j) ="nN;; <€ C

C+ EL(C, O, [0, |V|—1], L, Rypc, EP)
return C

dictions are utilized. Due to the curse of dimension-
ality (Li et al., 2020), conditional independence tests
become less reliable with larger conditioning sets. PC
addresses this through a ”statistical conditioning” bias
that prioritizes smaller conditioning sets first—a com-
mon design pattern in causal discovery algorithms.

While this approach maximizes test reliability without
expert knowledge, it limits the potential benefit of ex-
pert predictions: false edges requiring larger condition-
ing sets for removal cannot be eliminated early, forcing
unnecessary tests at lower conditioning levels and in-
flating adjacency sets for neighboring edges (Appendix
G). This limitation motivates removing the level-by-
level constraint to enable earlier removal of false edges
with non-trivial minimal d-separating sets.

5.2 gPC-Guess

To address the limitations of PC’s level-by-level con-
straint, we propose gPC-Guess (Alg. 6), which en-
ables immediate action on expert predictions. Like
PC-Guess, gPC-Guess extracts orderings O and L from
G via Subroutine F.1, but replaces PC’s iterative struc-
ture with a single-pass approach that tests all edges
using conditioning sets from size 0 to |V| — 1.

This design eliminates the statistical conditioning bias
in favor of expert responsiveness: gPC-Guess uses a
simplified validity rule Rypc that only checks edge
presence, allowing false edges with non-trivial mini-
mal d-separating sets to be removed immediately when
placed early in O. While this can reduce adjacency
set inflation and improve accuracy with good expert
guidance, it risks testing edges with unnecessarily large
conditioning sets when expert predictions are inaccu-
rate, potentially compromising test reliability.

5.3 Theoretical Guarantees

Correctness and Statistical Consistency (C1).
Both PC-Guess and gPC-Guess maintain the theoret-
ical guarantees of their base algorithms regardless of
expert quality, converging to the true graph with con-
sistent conditional independence tests:

Theorem 5.1 (Asymptotic Correctness). Under a
consistent conditional independence test, for both PC-
Guess and gPC-Guess, lim, ., P(G =G*) =1

The proof (Appendix D.11) follows from both algo-
rithms eventually considering all possible edges and
CITs regardless of ordering. This ensures asymptotic
performance is never compromised by potentially poor
expert guidance, satisfying C1.

Monotonic Improvement and Finite-Sample
Robustness (C2, C3). We characterize how ex-
pert quality affects finite-sample performance, with
per-iteration guarantees for PC-Guess and end-to-end
guarantees for gPC-Guess. Consider a fixed DAG G*
with d variables and expert 3 with edge accuracy
py and d-separation accuracy pd-sep, drawing n sam-
ples from G* and prediction G from 1. We compare
guided variants (PC-Guess, gPC-Guess) against un-

guided baselines (PC, gPC) denoted with overbars ().

For PC-Guess, fix iteration ¢ € {0,1,...,d — 1} and
suppose both algorithms start with an identical par-
tial skeleton C. Let ®, and ®, denote perfect recovery
probabilities in iteration ¢ for PC-Guess and PC, re-
spectively. Let ¢, denote the number of tests run in
PC-Guess.

Theorem 5.2 (Performance of PC-Guess). PC-Guess
satisfies C2-C3 at per-iteration level: (a) E[®,] in-
creases monotonically with py; (b) For fized py, E[t,]
decreases monotonically with pa.sep; (¢) When py >
0.5, E[q)g] > E[fi)g]

Let ® and ® denote perfect skeleton recovery proba-
bilities for gPC-Guess and gPC, respectively, and let ¢
denote the total number of tests run in gPC-Guess.

Theorem 5.3 (Performance of gPC-Guess). gPC-
Guess satisfies C2-C3: (a) E[®] increases monoton-
ically with py; (b) For fized py, E[t] decreases mono-

tonically with pysep; (¢) When py, > 0.5, E[®] > E[®].

Proofs appear in App. D.12 and D.13, following di-
rectly from Lemmas 4.1 and D.9.

Remark 5.4. All montonicity relations and inequal-
ities are strict for nonempty and non-fully connected
graphs. The key distinction lies in guarantee scope:
while PC-Guess achieves improvements per iteration,
these may not compose into end-to-end guarantees due
to complex cascading effects across iterations. For ex-
ample, correctly removing false edges early helps re-
tain true edges later but may make it harder to re-
move persistent false edges. In contrast, gPC-Guess
provides end-to-end guarantees, fully satisfying crite-
ria C1-C38 for the final output. This reflects the fun-
damental tradeoff between PC-Guess’s statistical con-
ditioning bias and gPC-Guess’s expert responsiveness.

From Guess2Graph

< L

RN
s

® PC-Stable

Claude Opus 4.1

e
Methods

$ 4] gPC

gPC-Guess +
Claude Opus 4.1

0.4 0.5 0.6 0.7 0.8 0.9

Expe (o.psi)

(a) ER3 data with simulated expert. (b) Sachs data with simulated expert.

s F1 Score
(p.psi)

(c) Sachs data with LLM expert.

Figure 2: Performance improvement of PC-Guess and gPC-Guess with expert guidance.

6 Experiments

We evaluate how our algorithms satisfy criteria C1-
C3 through experiments with synthetic and real-
world data. Our results validate that gPC-Guess fully
achieves C1-C3, while PC-Guess empirically exceeds
its guarantees. LLM-boosted gPC-Guess outperforms
both the LLM alone and data-driven methods.

Datasets and Experts. We evaluate on synthetic
data (linear Gaussian models on Erdos-Renyi graphs,
Erdos and Renyi 1960) and real-world benchmarks.
Experiments in the main text focus on sparse ER
graphs (d = 20 variables, n = 100 samples) and
subsampled Sachs protein data (Sachs et al., 2005)
(d = 11,n = 100). We test two expert types: (1)
simulated experts ¥ with manually-tuned prediction
accuracy (we focus on better than random edge pre-
diction, i.e., py > 0.5 to validate C2, and hold con-
stant d-separating set prediction accuracy as entirely
random, i.e., pasep = 0.5), and (2) a LLM expert,
specifically Claude Opus 4.1 (Anthropic, 2025). Ap-
pendix H provides full simulation parameters, infor-
mation about real data, and details on how predic-
tions are generated (for both simulated and LLM ex-
perts). We explore additional experiments in App. I:
varying sample size to validate C1 (statistical consis-
tency), dimensionality, d-separating accuracy (Pd-sep),
and worst-case performance with experts below the C3
threshold (py < 0.5).

Methods and Metrics. We compare PC-Guess
and gPC-Guess against the order-independent baseline
PC-Stable (Ramsey et al., 2006). We include PC and
gPC as baseline versions of PC-Guess and gPC-Guess
where the edge predictions supplied to both methods
are uniformly sampled, i.e. py, = 0.5. All methods use
identical CI tests (see Appendix H.6), with o = 0.05.
Performance is measured using skeleton F1 scores (see
Appendix 1.1 for runtime).

Simulated Expert Results. Figures 2a and 2b
demonstrate how augmented algorithm performance

changes as synthetic experts provide increasingly ac-
curate edge predictions on synthetic and real-world
datasets. Figure 2a shows that on synthetic data, both
PC-Guess and gPC-Guess increase monotonically in
F1 score with expert accuracy (verifying C2). Despite
PC-Guess only having theoretical guarantees for per-
iteration improvement, it empirically achieves mono-
tonic improvement that is no worse than baseline for
py > 0.5 (empirically satisfying C3). As predicted
by theory, gPC-Guess benefits more from guidance,
achieving the highest accuracy when expert quality is
sufficient (py > 0.7). These results replicate in Figure
2b on the Sachs real-world dataset: we again observe
monotonic gains in both algorithms, but PC-Guess re-
mains relatively flat while gPC-Guess’s F'1 increases by
over 30 percentage points, confirming that algorithmic
redesign is necessary to fully realize C2.

LLM Expert Results. Figure 2¢ explores how DAG
guesses from real-world expert Claude Opus 4.1 ben-
efit our augmented algorithms on the Sachs dataset.
gPC-Guess achieves a 15% performance boost when
combined with Claude’s predictions, outperforming
the baselines by roughly 10 percentage points. This
demonstrates that our framework extends beyond the-
ory and has potential for combination with existing
LLM experts in real-world applications.

Additional Experiments. Appendix I presents re-
sults across varying sparsity, sample sizes, dimension-
ality, and d-separation accuracy. We report the key
findings: both algorithms retain monotonic improve-
ment with expert accuracy in sparse graphs, though
gains are reduced (App. 1.2). Performance gains from
expert predictions diminish with larger samples as all
methods converge to the true graph, confirming C1
(App. L1.3). Expert guidance value increases with
dimensionality, with greater improvements in high-
dimensional, low-sample settings (App. 1.4). Below
the C3 threshold (py, < 0.5), performance drops ~ 8%
in F1, but this penalty remains modest due to robust
correctness guarantees (App. 1.5).

From Guess2Graph

Discussion. We introduced G2G and applied it to
constraint-based discovery to develop PC-Guess and
gPC-Guess, which provably leverage unreliable expert
predictions with robust guarantees. Future work in-
cludes extensions to score/FCM-based algorithms, and
integration with hard/soft constraint approaches.

References

Ankur Ankan and Johannes Textor. Expert-in-the-
loop causal discovery: Iterative model refinement
using expert knowledge. In Proceedings of the 41st
Conference on Uncertainty in Artificial Intelligence,
UAI 2025, Rio de Janeiro, Brazil, July 2025.

Anthropic. System card: Claude opus 4 & claude son-
net 4. Technical report, Anthropic, May 2025.

Maria-Florina Balcan, Travis Dick, and Colin Manuel.
Learning to link. In International Conference on
Machine Learning (ICML), 2021.

Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huan-
huan Chen. From query tools to causal archi-
tects: Harnessing large language models for ad-
vanced causal discovery from data.

Taiyu Ban, Lyuzhou Chen, Derui Lyu, Xiangyu Wang,
and Huanhuan Chen. Causal structure learning su-
pervised by large language model. 2023.

Philippe Brouillard, Chandler Squires, Jonas Wahl,
Konrad Koérding, Karen Sachs, Alexandre Drouin,
and Dhanya Sridhar. The landscape of causal dis-
covery data: Grounding causal discovery in real-
world applications. In Proceedings of the Fourth
Conference on Causal Learning and Reasoning, vol-
ume 275 of Proceedings of Machine Learning Re-
search, pages 834-873. PMLR, 2025.

Laura E. Brown and Ioannis Tsamardinos. A strat-
egy for making predictions under manipulation. In
Proceedings of the Workshop on the Causation and
Prediction Challenge at WCCI 2008, volume 3 of
PMLR, pages 35-52, 2008.

Sandy Campbell and Don A. Moore. Overprecision
in the survey of professional forecasters. Collabra:
Psychology, 10(1):92953, 2024.

Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred
Zhang. Faster fundamental graph algorithms via
learned predictions. In International Conference on
Machine Learning (ICML), 2022.

David Maxwell Chickering. Optimal Structure Iden-
tification With Greedy Search. Journal of Machine
Learning Research, 3, 2002.

David Maxwell Chickering. Statistically Efficient
Greedy Equivalence Search. In Proceedings of the
36th Conference on Uncertainty in Artificial Intel-
ligence, 2020.

Davin Choo, Themistoklis Gouleakis, and Arnab
Bhattacharyya. Active causal structure learning
with advice. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, Proceed-

ings of Machine Learning Research. PMLR, 2023.

Kai-Hendrik Cohrs, Gherardo Varando, Emiliano
Diaz, Vasileios Sitokonstantinou, and Gus-
tau Camps-Valls. Large language models for
constrained-based causal discovery, 2024.

Diego Colombo and Marloes H. Maathuis. Order-
independent constraint-based causal structure
learning. Journal of Machine Learning Research,
2014.

A.C. Constantinou, Z. Guo, and N.K. Kitson. The Im-
pact of Prior Knowledge on Causal Structure Learn-
ing. Knowledge and Information Systems, 65:3385—
3434, 2023. doi: 10.1007/s10115-023-01858-x.

Gregory F. Cooper and Changwon Yoo. Causal dis-
covery from a mixture of experimental and observa-
tional data. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence, pages 116-125,
1999.

Victor-Alexandru Darvariu, Stephen Hailes, and
Mirco Musolesi. Large language models are effec-
tive priors for causal graph discovery, 2024.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin
Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy
evaluation for large language models. Association
for Computational Linguistics, 2024.

Itiel E. Dror. Cognitive and human factors in expert
decision making: Six fallacies and the eight sources
of bias. Analytical Chemistry, 92(12):7998-8004,
2020. doi: 10.1021/acs.analchem.0c00704.

Adiba Ejaz and Elias Bareinboim. Less greedy equiv-
alence search. In Advances in Neural Information
Processing Systems (NeurIPS), 2025.

Paul Erdos and Alfred Renyi. On the evolution of ran-
dom graphs. Publication of the Mathematical Insti-
tute of the Hungarian Academy of Sciences, 1960.

Eric Eulig, Atalanti A. Mastakouri, Patrick Blobaum,
Moritz Hardt, and Dominik Janzing. Toward falsi-
fying causal graphs using a permutation-based test.
In Proceedings of the AAAI Conference on Artificial
Intelligence, 2025.

Philipp M. Faller, Leena Chennuru Vankadara, Ata-
lanti A. Mastakouri, Francesco Locatello, and Do-
minik Janzing. Self-compatibility: Evaluating
causal discovery without ground truth. AISTATS,
2024.

Tao Feng, Lizhen Qu, Niket Tandon, Zhuang Li, Xi-
aoxi Kang, and Gholamreza Haffari. On the relia-

From Guess2Graph

bility of large language models for causal discovery.
In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics, 2025.

Ronald A. Fisher. On the probable error of a cor-
relation coefficient deduced from a small sample.
Metron, 1:3-32, 1921.

Uzma Hasan and Md Osman Gani. Optimizing Data-
driven Causal Discovery Using Knowledge-guided
Search, 2024.

Sujai Hiremath, Jacqueline Maasch, Mengxiao Gao,
Promit Ghosal, and Kyra Gan. Hybrid top-down
global causal discovery with local search for linear
and nonlinear additive noise models. In Proceedings
of the 37th Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2024.

Sujai Hiremath, Promit Ghosal, and Kyra Gan.
Losam: Local search in additive noise models with
mixed mechanisms and general noise for global
causal discovery. In Proceedings of the 38th Con-
ference on Neural Information Processing Systems
(NeurIPS), 2025.

Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard
Scholkopf, and Clark Glymour. Generalized Score
Functions for Causal Discovery. In Proceedings of the
24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1551—
1560, London United Kingdom, July 2018. ACM.

Billy Jin and Will Ma. Online bipartite matching with
advice: Tight robustness-consistency tradeoffs for
the two-stage model. Advances in Neural Informa-
tion Processing Systems, 35:14555-14567, 2022.

Thomas Jiralerspong, Xiaoyin Chen, Yash More,
Vedant Shah, and Yoshua Bengio. Efficient causal
graph discovery using large language models. arXiv
preprint arXiw:2402.01207, 2024.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean,
and Neoklis Polyzotis. The case for learned in-
dex structures. In Proceedings of the 2018 Inter-
national Conference on Management of Data (SIG-
MOD), pages 489-504, 2018.

Emre Kicitman, Robert Ness, Amit Sharma, and Chen-
hao Tan. Causal reasoning and large language mod-
els: Opening a new frontier for causality. Transac-
tions on Machine Learning Research (TMLR), 2024.

Kenneth Lee, Bruno Ribeiro, and Murat Kocaoglu.
Constraint-based causal discovery from a collection
of conditioning sets. In Proceedings of the 41st
Conference on Uncertainty in Artificial Intelligence
(UAI), 2025.

David A Levin and Yuval Peres. Coupling. In Mod-
ern Discrete Probability: An Essential Toolkit, chap-
ter 4. 2023. Version: December 20, 2023.

Junning Li and Z. Jane Wang. Controlling the false
discovery rate of the association/causality structure
learned with the pc algorithm. Journal of Machine
Learning Research, 10(17):475-514, 2009.

Runze Li, Wei Shen, and Haibo Zhou. On nonpara-
metric conditional independence tests for continuous
variables. WIREs Computational Statistics, 12(2):
€1489, 2020.

Torgny Lindvall. On strassen’s theorem on stochastic
domination. FElectronic Communications in Proba-

bility, 4:51-59, 1999. doi: 10.1214/ECP.v4-1005.

Xueqing Liu, Kyra Gan, Esmaeil Keyvanshokooh, and
Susan Murphy. Online uniform sampling: Random-
ized learning-augmented approximation algorithms
with application to digital health. arXiv preprint
arXiv:2402.01995, 2024.

Thodoris Lykouris and Sergei Vassilvitskii. Competi-
tive Caching with Machine Learned Advice, 2018.

Thodoris Lykouris and Sergei Vassilvitskii. Competi-
tive caching with machine learned advice. In Journal
of the ACM, volume 68, 2021.

Jacqueline Maasch, Weishen Pan, Shantanu Gupta,
Volodymyr Kuleshov, Kyra Gan, and Fei Wang.
Local discovery by partitioning: Polynomial-time
causal discovery around exposure-outcome pairs. In
Proceedings of the 40th Conference on Uncertainy in
Artificial Intelligence, 2024. doi: https://doi.org/10.
48550 /arXiv.2310.17816.

Putra Manggala, Atalanti
Kirschbaum, Shiva Prasad Kasiviswanathan,
and Aaditya Ramdas. Qa-calibration of language
model confidence scores. In Proceedings of the Inter-
national Conference on Learning Representations,
2025.

Michael Mitzenmacher and Sergei Vassilvitskii. Algo-
rithms with Predictions, 2020.

Francesco Montagna, Nicoletta Noceti, Lorenzo
Rosasco, Kun Zhang, and Francesco Locatello.
Causal Discovery with Score Matching on Additive
Models with Arbitrary Noise. In Proceedings of the
2nd Conference on Causal Learning and Reasoning.

arXiv, April 2023a. arXiv:2304.03265 [cs, stat].

Francesco Montagna, Nicoletta Noceti, Lorenzo
Rosasco, Kun Zhang, and Francesco Locatello.
Scalable Causal Discovery with Score Match-
ing. In Proceedings of the 2nd Conference on
Causal Learning and Reasoning. arXiv, April 2023b.
arXiv:2304.03382 [cs, stat].

Mastakouri, Elke

Karl Pearson. On the criterion that a given system of
deviations from the probable in the case of a cor-
related system of variables is such that it can be
reasonably supposed to have arisen from random

From Guess2Graph

sampling. Philosophical Magazine Series 5, 50(302):
157-175, 1900. doi: 10.1080/14786440009463897.

Jonas Peters, Joris Mooij, Dominik Janzing, and Bern-
hard Scholkopf. Causal Discovery with Continuous
Additive Noise Models, 2014.

Anne H Petersen, Merete Osler, and Claus T Ekstrgm.
Data-driven model building for life-course epidemi-
ology. American Journal of Epidemiology, 2021.

Joseph Ramsey, Peter Spirtes, and Jiji Zhang.
Adjacency-faithfulness and conservative causal in-
ference. In Proceedings of the Twenty-Second Con-
ference on Uncertainty in Artificial Intelligence,

pages 401-408, 2006.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A
Lauffenburger, and Garry P Nolan. Causal protein-
signaling networks derived from multiparameter
single-cell data. Science, 308(5721):523-529, 2005.

Mauro Scanagatta, Cassio P. de Campos, and Marco
Zaffalon. Min-bdeu and max-bdeu scores for learn-
ing bayesian networks. In Probabilistic Graphical
Models, volume 8754 of Lecture Notes in Computer
Science, pages 426-441. Springer, 2014. European
Workshop on Probabilistic Graphical Models (PGM
2014).

Arjun Sondhi and Ali Shojaie. The reduced pc-
algorithm: Improved causal structure learning in
large random networks. Journal of Machine Learn-
ing Research, 20:1-31, 2019.

Peter Spirtes. An Anytime Algorithm for Causal In-
ference. In Proceedings of the FEighth International
Workshop on Artificial Intelligence and Statistics,
volume R3, pages 278-285. PMLR, 2001.

Peter Spirtes and Clark Glymour. An Algorithm for
Fast Recovery of Sparse Causal Graphs. Social Sci-
ence Computer Review, 1991.

Peter Spirtes, Clark Glymour, and Richard Scheines.
Causation, Prediction, and Search, volume 81 of
Lecture Notes in Statistics. Springer New York,
New York, NY, 2000. ISBN 978-1-4612-7650-0 978-
1-4612-2748-9. doi: 10.1007/978-1-4612-2748-9.

Eric V. Strobl, Peter L. Spirtes, and Shyam
Visweswaran. Estimating and controlling the false
discovery rate of the pc algorithm using edge-specific
p-values. ACM Transactions on Intelligent Systems
and Technology, 10(5):1-37, 2019.

Zhuofan Sun and Qingyi Li. Leveraging LLMs for
Causal Inference and Discovery, 2024.

Yuni Susanti and Michael Faber. Can LLMs Leverage
Observational Data? Towards Data-Driven Causal
Discovery with LLMs, 2025.

Masayuki Takayama, Tadahisa Okuda, Thong Pham,
Tatsuyoshi Ikenoue, Shingo Fukuma, Shohei

Shimizu, and Akiyoshi Sannai. Integrating large
language models in causal discovery: A statistical
causal approach. Transactions on Machine Learn-
ing Research, 2025. arXiv:2402.01454.

Peter W G Tennant, Eleanor J Murray, Kellyn F
Arnold, Laurie Berrie, Matthew P Fox, Sarah C
Gadd, Wendy J Harrison, Claire Keeble, Lyn-
sie R Ranker, Johannes Textor, Georgia D Tomova,
Mark S Gilthorpe, and George T H Ellison. Use
of directed acyclic graphs (DAGs) to identify con-
founders in applied health research: review and rec-
ommendations. International Journal of Epidemiol-
ogy, 2021.

Ioannis Tsamardinos, Laura E. Brown, and Con-
stantin F. Aliferis. ~The max-min hill-climbing
Bayesian network structure learning algorithm.
Machine Learning, 65(1):31-78, October 2006.
ISSN 0885-6125, 1573-0565. doi: 10.1007/
$10994-006-6889-7.

Caroline Uhler, Garvesh Raskutti, Peter Bithlmann,
and Bin Yu. Geometry of the faithfulness assump-

tion in causal inference. The Annals of Statistics, 41
(2):436-463, 2013. doi: 10.1214/12- AOS1080.

Aniket Vashishtha, Gowtham Reddy Abbavaram, Ab-
hinav Kumar, Saketh Bachu, Vineeth N. Balasub-
ramanian, and Amit Sharma. Causal Order: The
Key to Leveraging Imperfect Experts in Causal In-
ference. In The Thirteenth International Conference
on Learning Representations (ICLR), 2025.

Alexander Wei and Fred Zhang. Optimal robustness-
consistency trade-offs for learning-augmented online
algorithms. Advances in Neural Information Pro-
cessing Systems, 33:8042-8053, 2020.

Xingyu Wu, Kui Yu, Jibin Wu, and Kay Chen Tan.
LLM Cannot Discover Causality, and Should Be Re-
stricted to Non-Decisional Support in Causal Dis-
covery, 2025.

Zhiqiang Xie, Yujia Zheng, Lizi Ottens, Kun Zhang,
Christos Kozyrakis, and Jonathan Mace. Cloud at-
las: Efficient fault localization for cloud systems us-
ing language models and causal insight. 2024.

Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue
Wang, Derek F. Wong, Emine Yilmaz, Shuming Shi,
and Zhaopeng Tu. Benchmarking LLMs via uncer-
tainty quantification. 2024.

Kuat Yessenov. Descents and the weak bruhat order,
2005.

Kun Zhang and Aapo Hyvarinen. Distinguishing
Causes from Effects using Nonlinear Acyclic Causal
Models. 2008.

Kun Zhang and Aapo Hyvarinen. On the Identifiabil-
ity of the Post-Nonlinear Causal Model. Uncertainty
in Artificial Intelligence, 2009.

From Guess2Graph

Yuehua Zhu, Panayiotis V. Benos, and Maria Chikina.
A hybrid constrained continuous optimization ap-
proach for optimal causal discovery from biological
data. Bioinformatics, 40(Suppl 2):ii87-1i97, 2024.
doi: 10.1093/bioinformatics/btaed11.

Or Zuk, Shiri Margel, and Eytan Domany. On the
number of samples needed to learn the correct struc-
ture of a bayesian network. In Proceedings of the
28th Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 560-569, 2012.

Appendix

A Introduction

A.1 TUnbounded Error Example

To illustrate why hard constraints from unreliable experts can cause unbounded error, we provide a concrete
example using the PC algorithm. Recall that PC discovers the skeleton of the underlying DAG by running condi-
tional independence tests, removing edges between pairs of variables when there exists at least one conditioning
set that renders them conditionally independent.

Example construction. Consider the true DAG on four variables {z1, x2, 3, 24} where x; is a common cause:
T1 — To, Ty — X3, T1 — T4. In this structure, x; confounds the relationships between xs, x3, and z4. Now
suppose an expert provides a hard constraint specifying that z; is an isolated node with no edges, implying
T A T2, T1 1 T3, 1 A T4.

Cascading failure. Under this incorrect hard constraint, PC with oracle independence tests will incorrectly
infer edges between all pairs in {xs, 3, x4}: specifically, edges (z2,x3), (z2,24), and (23, x4). This occurs because
the only conditioning set that renders these variables pairwise independent is {z;}. However, PC’s adjacency-
based testing procedure means that when testing whether to remove edge (z;, z;), the algorithm only considers
conditioning sets composed of variables adjacent to at least one of x; or x; in the current skeleton. Since the
expert’s hard constraint excludes z; from all adjacency sets by decree, the critical conditioning set {x;} is never
tested, and all three spurious edges are incorrectly retained.

Unbounded error. The resulting skeleton exhibits maximum possible error: every edge in the recovered
skeleton is absent from the true graph (three false positives), and every edge in the true graph is absent from
the recovered skeleton (three false negatives). This demonstrates unbounded error in the sense that expert
misinformation leads to arbitrarily poor performance relative to running PC without any expert guidance—even
with oracle conditional independence tests and infinite samples.

General mechanism of error propagation. This example illustrates a fundamental vulnerability of hard-
constraint methods: causal discovery algorithms typically leverage results from early tests to determine which
tests are run (and how their results are interpreted) at later stages. This sequential dependence is often necessary
to efficiently navigate the super-exponential search space of DAGs. However, it creates a pathway for error
propagation, where mistakes in discovering one part of the causal structure (such as incorrectly excluding edges
based on expert constraints) cause: (i) crucial tests to never be performed, and (ii) results of later tests to
be misinterpreted or leveraged incorrectly. When expert advice in the form of a hard constraint incorrectly
determines parts of the causal graph, it initiates a cascade of errors that propagates throughout the algorithm,
potentially leading to catastrophic failure even in the large-sample limit. This motivates our approach of using
expert guidance to optimize test sequences rather than to replace statistical testing with hard constraints.

A.2 Sequential Testing in Causal Discovery

Here we discuss how sequential statistical testing underlies the three major paradigms of causal discovery:
constraint-based, score-based, and functional causal model (FCM) based methods. In each paradigm, the tests
performed at later stages fundamentally depend on the outcomes of earlier tests, creating a sequential dependence
structure susceptible to error propagation.

Constraint-based methods. Constraint-based algorithms operate by performing conditional independence
tests (CITs) to iteratively refine a candidate graph structure. Critically, which CITs are performed at any given
stage depends on the results of CITs performed in earlier stages. This sequential dependence manifests primarily
through adjacency sets: when testing whether to remove an edge between variables x; and x;, algorithms such as

From Guess2Graph

PC (Spirtes, 2001) only condition on subsets of variables currently adjacent to x; or ; in the working skeleton.
When earlier tests incorrectly remove (or retain) edges, the adjacency sets used in subsequent tests are corrupted.
For instance, if a true edge x; — z, is incorrectly removed early in the algorithm, then z; will be excluded from
the adjacency set when later testing edges involving z;, potentially causing the algorithm to miss the conditioning
set needed to correctly identify other edges. This cascading effect means that errors in early tests propagate
through the entire discovery process via their influence on which variables are considered in later conditioning
sets.

Score-based methods. Score-based algorithms attempt to optimize a scoring function (such as BIC) by
iteratively adding, deleting, or reversing edges in the candidate graph (Chickering, 2002). At each step, algorithm
evaluates the score change associated with each possible modification and selects the move that most improves the
score. Crucially, the score assigned to any proposed edge modification depends on the current parent sets of the
variables involved, which are themselves determined by all prior edge additions and deletions. For example, when
considering whether to add edge x; — x;, the score change is computed based on x;’s current parent set Pa(z;);
if previous iterations incorrectly modified Pa(z;), the score for this new edge will be miscalculated. Recent
work has formalized score-based methods as performing implicit conditional independence tests (Chickering,
2020), making the connection to sequential testing even more explicit. Like constraint-based methods, score-
based approaches exhibit cascading errors where early mistakes in edge selection corrupt the parent sets used
for scoring future edge modifications.

FCM-based methods. Functional causal model (FCM) based methods, specifically those based on additive
noise models (ANM) (Zhang and Hyvarinen, 2008), typically operate by constructing a topological ordering of
variables through recursive identification of roots (variables with no parents) or leaves (variables with no children
(Montagna et al., 2023b,a; Hiremath et al., 2024, 2025)). The standard approach maintains a set of unsorted
variables and, at each iteration, tests which of these variables satisfy the root or leaf condition by checking
whether they are independent of other unsorted variables conditional on already-sorted variables. For instance,
when identifying leaves, a variable x; is classified as a leaf if its residuals (after regressing on each other unsorted
variable individually) are independent of those regressors. The key sequential dependence arises because: (i) the
set of candidate variables tested for root/leaf status at each iteration depends on which variables were identified in
previous iterations, and (ii) the conditioning sets used in these independence tests (the already-sorted variables)
are built up incrementally based on prior test results. If an earlier iteration incorrectly identifies a non-leaf as a
leaf, this error propagates by corrupting both the candidate set and the conditioning sets used in all subsequent
iterations. This can be viewed as a series of tests for root/leaf status, where the outcome of each test determines
which variables and conditioning sets are used in future tests.

Implications for expert guidance. This universal reliance on sequential testing across all three paradigms
creates both a challenge and an opportunity. The challenge is that error propagation can cause early mistakes
to cascade throughout the algorithm. The opportunity is that by optimizing the sequence in which tests are
performed—without changing the tests themselves—we can improve finite-sample performance while preserving
asymptotic correctness. Our G2G framework exploits this insight by using expert predictions to guide test
sequences rather than to replace statistical testing, making it broadly applicable across constraint-based, score-
based, and FCM-based methods.

A.3 Expert Error Violating Guarantees for Expert-Aided Discovery with Soft Constraints

Traditional expert-aided discovery methods integrate expert predictions through either hard constraints (which
enforce expert beliefs directly) or soft constraints (which bias statistical procedures toward expert beliefs). In
Appendix A.1, we demonstrated how hard constraints can lead to unbounded error through error propagation.
Here, we discuss how soft constraint approaches fundamentally compromise the theoretical guarantees of causal
discovery algorithms in both score-based and constraint-based methods. In what follows we summarize the
analysis of Wu et al. (2025), who demonstrate that soft constraint methods break the mathematical foundations
underlying both paradigms.

Soft constraints in score-based methods. Score-based methods incorporating soft constraints typically
modify the scoring function by adding a prior term based on expert predictions:

o(G; D, \) = o(G; D) + o(G; N)
where o(G; D) evaluates how well graph G fits the data D, and o(G; \) rewards or penalizes structures based

From Guess2Graph

on expert constraints A. This direct summation creates three fundamental problems that undermine theoretical
guarantees:

First, the terms operate in incompatible probability spaces. The data term o(G; D) reflects log-likelihood under
sample data, while the prior term o(G; \) encodes expert beliefs independent of data. These quantities have dif-
ferent statistical foundations and cannot be meaningfully combined through simple addition. The scale mismatch
is severe: for example, in the BIC score oprc(G; D) = log P(D|G) — glog N, the sample size N dramatically
affects the magnitude of the data term, while o(G;) is independent of N. Without principled normalization, one
term typically dominates, either drowning out expert guidance or allowing poor expert predictions to overwhelm
statistical evidence.

Second, existing scoring functions already contain implicit priors that conflict with expert priors. For instance,
the BDeu score (Scanagatta et al., 2014) assumes Dirichlet uniform priors and prior independence of all vari-
ables—assumptions that directly contradict typical expert predictions about causal relationships. Introducing
o(G; \) creates competing prior specifications with no principled mechanism for reconciliation, requiring ad-hoc
hyperparameters to balance multiple conflicting priors and data fit.

Third, adding expert priors breaks critical structural properties. Traditional scoring functions satisfy decom-
posability, allowing the score to be written as o(G; D) = Y. | o(z;,Pa(x;); D), which enables efficient local
optimization. Expert priors o(G; \) often impose global constraints across multiple variables that cannot be
decomposed into local contributions, rendering many optimization algorithms inapplicable. Additionally, soft
constraints violate score local consistency, which guarantees that improving local fit to data improves the overall
score. When expert priors incorrectly emphasize certain relationships, local changes that better reflect data may
receive lower scores, breaking the connection between score optimization and causal structure recovery.

Soft constraints in constraint-based methods. While hard constraints in constraint-based methods create
error propagation pathways (Appendix A.1), soft constraint approaches that incorporate edge priors from ex-
perts into conditional independence testing face a different but equally fundamental issue: they invalidate the
distributional theory underlying hypothesis tests.

Some approaches modify conditional independence test statistics by incorporating expert edge priors. For ex-
ample, methods that integrate soft constraints into the G? test adjust the statistic as:

GHXY|Z)—p> X

where p encodes prior beliefs about the strength or likelihood of the causal relationship between X and Y. While
this appears to simply modulate the rejection region based on expert confidence, it fundamentally invalidates
the statistical theory underlying the test.

The core issue is that subtracting p distorts the asymptotic distribution. The G? statistic has well-established
asymptotic properties—specifically, it follows a chi-squared distribution under the null hypothesis of conditional
independence. Subtracting an arbitrary prior term p based on expert beliefs destroys these properties: the
modified statistic G(X,Y|Z) — p no longer follows a chi-squared distribution, invalidating hypothesis tests
based on comparing to Xi, ¢ critical values. Even if the modified statistic could be shown to asymptotically
follow some chi-squared distribution, the degrees of freedom f and critical values would need to be rederived
from first principles—a non-trivial task that existing methods do not address. Without valid asymptotic theory,
there are no guarantees about Type I error rates, power, or consistency.

This problem extends beyond the G2 test to any approach that incorporates expert edge priors by modifying test
statistics. Whether using Fisher’s Z-test, permutation tests, or other conditional independence tests, directly
adjusting the test statistic or critical values based on soft expert constraints breaks the calibration that ensures
valid statistical inference. The result is that even with infinite data, these methods cannot guarantee asymptotic
correctness when expert predictions are inaccurate.

Implications. Both score-based and constraint-based soft constraint approaches sacrifice the rigorous statistical
foundations that provide guarantees for purely data-driven methods. In score-based methods, soft constraints in-
troduce mathematically inconsistent score combinations and break structural properties needed for optimization.
In constraint-based methods, soft constraints invalidate the distributional theory underlying hypothesis tests.
These are not merely technical concerns—they represent fundamental incompatibilities between integrating un-
reliable expert predictions through soft constraints and maintaining statistical guarantees. Our G2G framework

From Guess2Graph

addresses these issues by using expert predictions to guide test sequences rather than test outcomes, preserv-
ing the statistical validity of each individual test while leveraging expert knowledge to improve finite-sample
efficiency.

From Guess2Graph

B Definitions

This section details the core assumptions underlying our causal structure learning framework.

Definition B.1 (Causal Markov Condition, Spirtes 2001). A causal graph G = (V, E) satisfies the Causal Markov
Condition if and only if every variable x; € V is independent of its non-descendants given its parents Pa(x;).
This implies that the joint distribution p(V) factorizes as:

d

p(V) = [I p(ei | Pa(ai). (2)

i=1

Definition B.2 (Acyclicity, Spirtes 2001). A causal graph G is acyclic if it contains no directed paths starting
and ending at the same node.

Definition B.3 (Faithfulness, Spirtes 2001). A distribution p is faithful to a graph G if every conditional
independence relation present in p is entailed by the Causal Markov Condition applied to G. That is, for any
disjoint sets of variables x,y, Z :

xly|Zinp — Z d-separates x andy in G.

Definition B.4 (Causal Sufficiency, Spirtes 2001). A set of variables V is causally sufficient if there exist no
unobserved confounders for any pair of variables in V. Formally, for any z;,x; € V, there is no unmeasured
variable U ¢ V that is a direct cause of both x; and x; in the true causal graph.

Definition B.5 (d-Separation, Spirtes 2001). A set of variables Z d-separates variables x and y in a graph G
if and only if Z blocks all paths between x and y. This graphical condition implies the conditional independence
x 1y | Z in every distribution that is Markov with respect to G.

Definition B.6 (Markov Equivalence Class, Spirtes 2001). The Markov equivalence class (MEC) of a DAG G
is the set of all DAGSs that imply the same set of conditional independence statements via d-separation. Under
the assumptions of causal Markov, faithfulness, and causal sufficiency, the MEC can be identified from perfect

conditional independence tests and is typically represented by a Completed Partially Directed Acyclic Graph
(CPDAG).

Definition B.7 (Sufficient Power and Mutual Independence of CITs). We assume that conditional independence
tests satisfy two properties:

1. Sufficient Specificity: CITs are adequately powered such that 1 —a > 3, where a is the Type I error rate
(false positive rate) and 5 is the Type II error rate (false negative rate) of each CIT.

2. Mutual Independence: The outcomes of different CITs are mutually independent. Formally, for CITs
indexed by i € {1,...,m}:

P(CITy, ..., CIT,,) = [[P(CIT))

=1

The ‘sufficient specificity’ assumption claims that each CIT has a false positive and false negative rate of a, 8
respectively, and ensures the true negative rate exceeds the false negative rate, i.e., that there is enough data
collected such that CITs that condition on d-separating sets return independence with higher probability than
those that do not.

The ‘mutual independence’ assumption is a simplifying assumption for theoretical analysis commonly made in
causal discovery (Brown and Tsamardinos, 2008; Li and Wang, 2009; Strobl et al., 2019; Cooper and Yoo, 1999).
The statement holds exactly with infinite data or when using data-splitting (where each CIT uses an independent
sample), but is an approxzimation when CITs reuse the same finite dataset, as is common in causal discovery.

We invoke these assumptions for our runtime analysis (Subroutine 4, Lemma D.8), but note that they are both
not used in our accuracy analysis (Subroutine 3, Lemma 4.1).

From Guess2Graph

C CD-GUESS Framework and Application to Constraint-Based Discovery

C.1 Extensions of CD-GUESS Framework

Here we outline a few possible extensions of the CD-GUESS Framework.

C.1.1 Heuristic Selection of Experts and Pruning of Guesses

When integrating LLM predictions with data-driven causal discovery, we identify three distinct regimes: World
1 where data-driven methods alone perform best (LLM guidance degrades performance), World 2 where hybrid
approaches excel (combining data and LLM guidance), and World 3 where the LLM guess alone suffices (outper-
forming empirical methods). Which world applies depends on the interplay between LLM guess quality, sample
size, and the underlying graph structure—with higher-quality guesses and smaller samples favoring Worlds 2 and
3. Our primary concern is preventing World 1 scenarios by detecting when LLM predictions are harmful, as this
represents the most critical failure mode where expert guidance actively degrades baseline performance. There
are two main approaches to trying to prevent World 1 from occurring. The first is validate whether the specific
guess given by an expert is better than random (Checking Guess Quality). If this is infeasible, we can attempt
to identify whether the expert is any good in this domain (Checking Expert Competency).

Guess Quality. This approach evaluates specific causal structure predictions by assigning fitness scores that
correlate with graph accuracy—higher scores indicate more accurate graphs. To assess whether a given score is
meaningful, we construct a null distribution by sampling random graphs and testing whether the expert’s guess
scores significantly above this baseline. Two primary methodologies exist: likelihood-based and nonparametric
approaches, which differ in computational complexity and modeling flexibility.

Likelihood-based methods (Huang et al., 2018) assume parametric models for the underlying functional relation-
ships (e.g., residing in specific kernel spaces or exponential families) and derive scores that measure graph-data
compatibility. Random graphs of similar density provide the comparison baseline. Notably, likelihood scores
do not monotonically increase with graph accuracy as measured by skeleton or edge metrics, serving instead as
relative comparison measures between candidate structures.

Nonparametric approaches, exemplified by permutation-based methods (Eulig et al., 2025), evaluate graphs by
counting how many conditional independence tests in the data align with the d-separation statements implied by
each graph. When sampling comparison graphs, we can either generate them uniformly at random or preserve
specific properties of the expert guess, such as sparsity constraints or causal ordering structure. While these
methods provide monotonic relationships between scores and accuracy (measured by satisfied CI statements),
they incur higher computational costs and may exhibit greater sensitivity to finite-sample effects.

Formally, we suggest to compute a p-valueasp = L+ > 1 [score(Gr,) > score(G)], where {Gr, }™ , are randomly

m 1=
sampled graphs preserving relevant properties (e.g., edge density), and QA is the expert prediction. If p < aya
for significance level oy, (e.g., 0.05), indicating the expert guess scores significantly better than random, we
incorporate the guidance into test prioritization; otherwise, we proceed without expert guidance to maintain
baseline performance guarantees.

We note that there are roughly 3 possible scenarios where it is difficult to directly assess the quality of a
guess. The first is that data-driven methods may require strong assumptions on the DGP, such as parametric
functional assumptions, that may not be satisfied. Additionally, some types of graph structures, such as dense
graphs, provide relatively few Cls for nonparametric scores to validate, leading to low power in those regimes.
Additionally, while there are many methods for assigning a score to causal graphs, there are fewer methods for
assessing the fittingness of causal orderings, a fundamentally more difficult problem. Therefore, in these cases
where it is hard to leverage the data itself, we propose to rely on a data-independent measure: the self-consistency
of the expert.

Expert Self-Consistency. As suggested by Faller et al. (2024), we assess expert reliability by evaluating self-
consistency across predictions on overlapping variable subsets. This data-free approach requires the expert to pro-
duce causal graphs for multiple variable subsets and measures agreement where these subsets overlap—paralleling
recent findings that LLM response consistency under prompt variations correlates with reliability. We suggest to
compute a consistency score C(¢) = ﬁ 2 (81,80)ep SIm(Gy (51U S2)[s1ns,, Gy (51N S2)), where ¢ is the expert,
P is a collection of overlapping variable subset pairs, and sim(, -) is some sort of measure of structural similarity

From Guess2Graph

on the shared variables. This metric provides theoretical guarantees: a perfectly accurate expert must exhibit
perfect self-consistency. If C(¢)) > 7. for a pre-specified threshold 7. (e.g., 0.7), we proceed with expert-guided
discovery; otherwise, we default to vanilla PC to preserve baseline performance. While this approach effectively
screens for domain competence, it faces two limitations: the computational cost of querying numerous sub-
sets may be prohibitive, and it evaluates general expert reliability rather than the quality of specific structural
predictions.

C.1.2 Integrating Uncertainty Quantification

We note that PC-Guess can be extended to leverage confidence estimates, for use in situations where an expert
can do uncertainty quantification for their predictions. For example, the ordering algorithms (Subroutines 3,
4) can be modified such that the orderings are not drawn uniformly from two buckets, but rather according to
confidence score. More formally, when the expert provides edge confidence scores wy,(z;,2;) € [0,1] and order-
ing confidence my(z; < ;) € [0,1], we suggest to modify test prioritization to sample probabilistically rather
than deterministically. For edge testing order, we sample the next pair (x;,x;) with probability proportional
to 1 — wy(z;,2;), favoring likely non-edges. For conditioning set selection, we sample set .S with probability
proportional to [[,.gmy(z < {x;,2;}), favoring sets containing likely ancestors. This probabilistic approach
naturally interpolates between expert-guided and random search based on prediction confidence, maintains the-
oretical guarantees (all tests have non-zero probability), and becomes exploratory under high uncertainty. With
uniform uncertainties, it reduces to standard PC.

C.1.3 Leveraging Causal Reasoning

Additionally, when economically or computationally feasible, after a number of structural decisions (e.g., edge
confirmation/removal) are made, we could in theory reprompt the expert to provide a new guess using the updated
partial structure, repeating the process until the algorithm terminates. This iterative refinement would then
leverage the compositional reasoning abilities of experts to produce progressively better predictions as structural
information is confirmed, allowing them to correct earlier mistakes and incorporate validated constraints. To
fully exploit expert capabilities, we reprompt the expert for updated predictions after each edge decision during
discovery. This iterative approach offers two key advantages: first, as the structure is progressively verified,
the problem dimensionality decreases, where LLMs demonstrably achieve higher accuracy on smaller graphs;
second, the confirmed structural information provides additional context that allows the expert to correct earlier
mistakes and make more informed predictions about remaining edges. Thus, rather than using a static initial
guess, we dynamically update expert guidance throughout the discovery process.

C.2 Extension to Score-Based Methods

Method description. Score-based algorithms like GES (Chickering, 2002) discover causal structure by greedily
optimizing a scoring function, iteratively adding or removing edges that maximize the score improvement. A vari-
ant called SE-GES (Chickering, 2020) restricts the search to statistically efficient operators—those conditioning
on the fewest variables—to improve finite-sample performance:

SE-GES (Algorithm 2) operates as follows. First (Line 1), it applies FINDIMAP to identify an initial graph
structure which contains the conditional independencies in the data. It then progressively iterates through
increasing values of bound k on the conditioning set size, starting from k = 0. At each iteration, two key steps
occur:

Line 5 - UPDATESEPARATORS: This subroutine identifies all order-k separators M* by testing conditional
independence statements of size k. These separators capture which variable pairs are conditionally independent
given k conditioning variables, forming the statistical basis for edge removal decisions. Specifically, UPDATE-
SEPARATORS tests CI statements of the form CIT(z;,z; | W) where |W| = k, storing those that return
independent as order-k separators. This collection M* grows as k increases, accumulating evidence about which
edges can be safely removed.

Line 6 - SE-BES: Using the separators M*, SE-BES performs backward elimination by evaluating deletion
operators (edge removals) while restricting to those of order at most k, optimizing a scoring function that
balances fit and complexity.

From Guess2Graph

Algorithm A Statistically Efficient Greedy Equivalence Search (SE-GES)

Input: Data D
Output: CPDAG C
C + FINDIMAP(D)
M~! + UNDEFINED for all node pairs
k+0
repeat
M* + UPDATESEPARATORS(M*1, k)
C «+ SE-BES(C, k)
if every node in C has < k parents then
return C
else
k+—k+1
end if
: until convergence

e e
Ll T

After SE-BES completes, Line 7 checks whether the resulting CPDAG is consistent with bound k—whether
every node has at most k parents. If consistent, the algorithm terminates; otherwise, it increments k and
repeats, testing higher-order conditional independencies.

Computational challenge and proposed modification. As graph size grows, exhaustively testing all k-
order CI statements becomes computationally prohibitive. This necessitates imposing a budget @ on the number
of CI tests per edge per round, inducing a preference over which tests to prioritize and in what order to execute
them.

We propose using G2G-guided test ordering as a subroutine within SE-GES. Specifically, for each conditioning set
size k, rather than testing CI statements uniformly at random, we apply the ordering principles from PC-Guess
(Section 4) to prioritize tests: (1) extract edge predictions from expert graph G, (2) prioritize testing edges the
expert believes are false (likely to yield independence), and (3) within each edge’s tests, prioritize conditioning
sets the expert predicts are d-separating.

Potential benefits. This modification offers several advantages while preserving SE-GES’s theoretical guaran-
tees:

e Budget efficiency: Under limited testing budgets, prioritizing tests more likely to reveal true independencies
increases the probability of correctly identifying removable edges within the allocated @) tests per edge

e Search space reduction: Farlier identification of true non-edges prunes the graph faster, reducing downstream
computational costs

e Preserved guarantees: Since SE-GES’s correctness depends only on testing sufficient CI statements (not
their order), expert-guided prioritization cannot compromise asymptotic correctness

Conjectured theoretical properties. Analogous to our constraint-based results (Theorems 5.1, 5.3), we
conjecture that expert-guided SE-GES satisfies similar guarantees. Specifically, we expect that as sample size
n — oo and testing budget @@ — oo, the algorithm maintains statistical consistency and recovers the true skeleton
regardless of expert quality, since all edges eventually receive their full budget of tests. For fixed Q@ and n, we
conjecture that the expected probability of correct skeleton recovery increases monotonically with expert edge
prediction accuracy py,—Dbetter experts identify true non-edges earlier, increasing the probability that budget-
limited tests discover removable edges. Finally, we expect finite-sample robustness: when p,, > 0.5, expert-guided
test ordering should achieve performance at least as good as random ordering, since experts performing at chance
produce orderings distributionally equivalent to random, with strictly better performance when p, > 0.5. While
we have not completed formal proofs of these properties, the intuition directly mirrors our constraint-based
analysis, and we believe the results could be established using similar coupling arguments we use in our proofs.

Prior work has proposed expert-augmented score-based methods through heuristics like initialization with expert
guesses or preferring operations agreeing with expert predictions (Constantinou et al., 2023; Ejaz and Bareinboim,

From Guess2Graph

2025), but without formal guarantees. Our G2G framework suggests a principled approach with conjectured
theoretical properties worth investigating in score-based methods.

C.3 Extension to ANM-Based Methods

Method description. ANM-based algorithms discover causal structure by exploiting asymmetries in functional
relationships under additive noise models. A prominent example is RESIT (Peters et al., 2014), which identifies
the causal DAG by iteratively finding leaf nodes (variables with no children):

Algorithm B RESIT (Simplified)

Input: Data D on variables V = {z1,...,24}
Output: Parent sets {Pa(z;)}%_,
S+ V, 7+ > S tracks remaining variables, 7 builds topological order
Phase 1: Determine topological order
repeat
for each zp € S do
Regress zx on S\ {zx}
Test independence between residuals and S\ {z\}
Record dependence strength
end for
Let xj+ be variable with weakest dependence
Pa(zg) < S\ {zi~}
14: T [Tgs, 7] > Prepend to topological order
15: until S =0
16: Phase 2: Prune superfluous edges (analogous to constraint-based edge removal)
17: return {Pa(z;)}L,

—_ =

—_ =

RESIT (Algorithm B) operates in two phases. Phase 1 (Lines 4-13) iteratively identifies leaf nodes by testing
all remaining variables to find which has residuals most independent of the others—this variable is a leaf and
removed from consideration. The algorithm builds a topological ordering 7w by prepending each identified leaf.
Phase 2 (Line 14) then prunes unnecessary edges from the identified parent sets.

The critical computational bottleneck is Line 5: at each iteration with |S| remaining variables, RESIT must
test all |S| candidates, requiring O(d?) total tests across iterations. Moreover, the order in which variables are
tested affects accuracy—if a non-leaf is incorrectly identified as a leaf due to test errors (false positive), this error
propagates through subsequent iterations.

Computational challenge and proposed modification. The key insight is that the order in which variables
are tested in Line 5 critically impacts both efficiency and accuracy. Testing true leaves first reduces the number
of tests (since the leaf is found immediately) and prevents false positive errors from incorrectly identifying
non-leaves.

We propose modifying RESIT to use G2G-guided variable ordering. Specifically: (1) query expert @ for a
predicted topological ordering 7 over variables V', (2) in Line 5, test variables in the order specified by # rather
than arbitrary order, prioritizing variables the expert predicts appear later in topological order (more likely to be
leaves). This modification directly parallels our edge ordering principle from Section 4—prioritizing tests more
likely to succeed.

Potential benefits. This modification offers several advantages:

o Computational efficiency: Testing true leaves first reduces the expected number of independence tests per
iteration from O(]S|) to O(1) when expert predictions are accurate

e Error reduction: Identifying true leaves early prevents false positives on non-leaves, reducing error propa-
gation through the topological ordering

From Guess2Graph

e Preserved guarantees: Since RESIT’s correctness depends on testing all variables (not their order), expert-
guided prioritization cannot compromise asymptotic correctness

Conjectured theoretical properties. Analogous to our constraint-based results (Theorems 5.1, 5.3), we con-
jecture that expert-guided RESIT satisfies similar guarantees. Let p, denote the expert’s accuracy in predicting
topological orderings (probability that for a random pair (z;,x;), if z; is an ancestor of x;, then 7(x;) < 7(z;)).
We expect that as sample size n — oo, the algorithm maintains statistical consistency and recovers the true DAG
structure regardless of p,, since all variables are eventually tested. For fixed n, we conjecture that the expected
probability of correct DAG recovery increases monotonically with p,—better topological ordering predictions
place true leaves earlier in the test sequence, increasing the probability of correct identification before errors
accumulate. We also expect finite-sample robustness: when p, > 0.5, expert-guided ordering should achieve per-
formance at least as good as random variable ordering, since random orderings provide the baseline (p, = 0.5)
with improvement when p, > 0.5. Finally, we conjecture that the expected number of tests decreases monotoni-
cally with p, because testing true leaves first terminates the inner loop earlier, providing computational efficiency
gains. While we have not completed formal proofs of these properties, the intuition follows directly from our
core insights, and we believe the results are straightforward to establish using similar analytical techniques.

This extension demonstrates how G2G principles—using expert predictions to guide test sequences—apply be-
yond constraint-based methods to functional causal model approaches, suggesting potential broad applicability
of the framework.

C.4 Decomposition of Constraint-Based Discovery into Edge Prune and Edge Loop

We demonstrate how two constraint-based algorithms—PC and rPC-approx—decompose into the Edge Loop
(EL) and Edge Prune (EP) subroutines defined in Section 4.

PC Algorithm. The PC algorithm iteratively tests edges with increasing conditioning set sizes ¢, removing
edges when independence is found.

Algorithm C PC (Skeleton Discovery)

1: Input: Complete skeleton C over variables V'

2: Sample O uniformly, sample L uniformly

3: Define RS (C,e; ;) = 1[n; j € C] A 1jadj_;(C, zi)| > 4]
4: for {=0to |V|—1do

5: C+ EL(C, O, [¢, 4], L, R, EP)

6: if no edges satisfy R%. then break

7: end for
8: return C

rPC-approx Algorithm. The rPC-approx algorithm (Sondhi and Shojaie, 2019) bounds conditioning set sizes
to n < |V]| — 1 and modifies the conditioning set search space to use local neighborhoods.

Algorithm D rPC-approx (Skeleton Discovery)

1: Input: Complete skeleton C over variables V', maximum size 7
2: Sample O uniformly, sample L uniformly
3: Define Rrpc(c, ei’j) = IL[ni,j S C]
4: for / =0 ton do
5: C + EL(C, O, [¢, 4, L, Rypc, EP)
6: end for
7: return C

Key differences in decomposition:

e Conditioning set size bound: PC iterates up to |V| — 1; rPC-approx stops at 7.

e Validity rule: PC’s R% . requires ladj_;(C, x;)| > £ (sufficient adjacency); rPC-approx’s R,pc only checks
edge presence.

From Guess2Graph

e Conditioning set source: In EP, PC draws subsets from adj_;(C,x;); rPC-approx draws from adj(C,z;) U
adj(C,z;) \ {zs,z;} (union of both endpoints’ neighborhoods).

Both algorithms follow the same template—iteratively calling EL with increasing /—differing only in their validity
rules, conditioning set size bounds, and the search space for conditioning sets within EP.

C.5 Complexities of Error Propagation in Edge Loop

We explain why error-tolerant metrics—such as expected number of correct edges B[, Yy, ;]—are analytically
intractable for ordering optimization, motivating our focus on perfect recovery probability ® in Section 4.1.

Notation. Recall that true edges n; ; € S* are edges present in the true skeleton, while false edges n; ; ¢ S*
are edges absent from the true skeleton but present in the current candidate skeleton C being tested.

Requirements for analyzing error-tolerant metrics. To optimize orderings under error-tolerant metrics,
we must:

(a) Identify qualitatively different error types: Constraint-based algorithms make two types of errors—false
positives (incorrectly retaining false edges) and false negatives (incorrectly removing true edges)

(b) Determine the magnitude of each error type’s impact: Quantify how each error affects the probability of
correctly classifying subsequent edges

(c) Characterize how sequence changes affect errors: Predict which sequence modifications reduce overall error
rates

Opposing downstream effects (Challenge for (a)). False positive and false negative errors have conflicting
impacts on future tests. Consider an edge ordering where edge ny is incorrectly decided at position k. For any
subsequent edge n; where j > k:

False Positive (incorrectly retaining false edge ny ¢ S*):

e The retained false edge artificially inflates |adj(C, z,,,)| for vertices z,, adjacent to ny

e By Lemma D.3, larger adjacency sets increase the number of CI tests, which:

— Helps remove subsequent false edges (more tests — higher chance of finding independence)

— Hurts retention of subsequent true edges (more tests — higher chance of spurious independence due to
finite-sample errors)

False Negative (incorrectly removing true edge ny € S*):

e The removed true edge artificially deflates |adj(C,)| for vertices z,, adjacent to ny

e By Lemma D.3, smaller adjacency sets decrease the number of CI tests, which:

— Helps retention of subsequent true edges (fewer tests — lower chance of spurious independence)

— Hurts removal of subsequent false edges (fewer tests — lower chance of finding true independence; may
also exclude crucial d-separating variables from adjacency sets)

Since the two error types have opposing effects—false positives benefit false edge detection but harm true edge
detection, while false negatives do the reverse— its not clear whether a single ordering strategy dominates without
knowing how the effect of the true graph structure, i.e. whether there are many true edges or false edges.

Unknown Error Magnitudes (Challenge for (b)). The magnitude of error propagation depends critically
on graph topology. Consider testing edges n; ; and ng p:

o If n; ; and ngy j share vertices, errors on n; ; directly modify the adjacency sets used when testing ng p

From Guess2Graph

o The severity depends on whether the removed/retained edge contains d-separating variables for ng p

e The true/false edge ratio in the graph determines whether false positive or false negative errors dominate
overall performance

e The error rate values (a, 8 play a role in the likliehood of different types of errors; if the 3 is high or low,
this might affect whether we optimize the sequence towards preventing false positives or false negatives.

Analytical Intractability (Challenge for (c)). The challenges for (a) and (b) make it difficult to analyze
theoretically whether a one sequence dominates another, as (a) presents a challenge to the notion that, even
with perfect information of the ground truth, its not clear how to determine the effect of swapping edges in a
sequence, and (b) shows that there is important information such as graph structure and error rates missing that
may be crucial to the analysis.

Conclusion. This graph-dependent complexity motivates our restriction to perfect recovery probability & =
P[[]Y,,, = 1] in Section 4.1. By conditioning on no prior errors (perfect recovery up to position i — 1), we
eliminate error propagation from the analysis, enabling the clean characterization in Lemma D.5: placing false
edges before true edges is universally beneficial regardless of graph structure.

From Guess2Graph

D Lemmas, Theorems, and Proofs

D.1 Proof of Lemma D.1

Lemma D.1. Under oracle CITs, when C is the complete graph over V., EL(C, O, [0,|V|—1], L, R, EP) returns
the same skeleton for any edge ordering O (and any L by Lemma D.2).

Proof. We prove that when given oracle CITs, if C is complete then the set of edges removed by EL is independent
of O. We show that each edge’s fate is determined solely by the existence of d-separating sets, not by the order
of processing.

All true edges are retained: Consider any edge n;; € C that is a true edge in the skeleton of G. By
faithfulness, @; JL z; | S for all S C V' \ {z;,z;}. When EL processes this edge (at any position in O), all CI
tests return dependent under perfect tests, so n; ; is never removed. Thus, all true edges remain in C throughout
execution regardless of O.

All false edges are removed: Consider any edge n; ; € C that is not in the true skeleton. By faithfulness and
causal sufficiency, there exists S C V' \ {x;,z;} such that x; 1L z; | S. By the Markov Condition (Definition
B.1), one such set must exist, for example at least one of Pa(z;) or Pa(z;). Let S be such a d-separating set.

Since C is initially complete and all parent edges are true edges in the skeleton, these parent edges remain in C
throughout execution (as all true edges are retained). Therefore, regardless of when EL processes edge n; ; in
the ordering O, we have S C adj_;(C, ;) when this edge is tested. EP will test with conditioning set S, the test
returns independent under perfect CI tests, and n; ; is removed.

Since both the retention of true edges and removal of false edges are independent of O when C is complete, EL
returns the same skeleton for any edge ordering. O

D.2 Proof of Lemma D.2

Lemma D.2. Under oracle CITs, for any edge e; ; and conditioning set size k, EP(C, e, j, k, L) returns the
same result for any subset ordering L.

Proof. EP tests all subsets s C [adj_;(C, z;)]x and removes edge n; ; if any CIT(z;,z; | s) returns independent.
With perfect CITs, the outcome of each test is deterministic and depends only on the conditioning set s, not on
when it is tested.

If there exists s C [adj_;(C, ;)] such that z; 1L x; | s, then EP will remove n; ; when it tests this conditioning
set, regardless of which ordering L is used to sequence the tests.

If no such s exists, then all tests return dependent and n; ; remains, again regardless of L.

Since the decision to remove or retain the edge depends only on the existence of a d-separating set among the
tested conditioning sets, not the order in which they are tested, EP returns the same result for any L under
perfect CI tests. O

D.3 Proof Lemma D.3

Lemma D.3. For o true edge n;; (where n;; € S*), adding vertices to the adjacency set adj(C,x;) strictly
decreases P(Yy, . = 1), while for a false edge n; ; (where n; ; ¢ S*) adding vertices strictly increases P(Y,, , =1).

Proof. We say an edge n; ; is a true edge if n; ; € S* and a false edge if n; ; ¢ S*.

Note in the k** step of Subroutine 2, a true edge n;; is kept if no CIT conditioning on a subset of size k
from adjacency set adj_;(C,z;) returns independent. Given that n;; is a true edge, all CITs of size k return
independent with the same false negative rate 3. Then, increasing the size of adj(C,x;) can only increase the
number of CITs run, which can only increase the probability that n; ; is incorrectly removed, which therefore
decreases P(Y,,, ; = 1).

From Guess2Graph

For a false edge n; j, correct specification (i.e., Y, ; = 1) occurs when the edge is removed, which happens if
and only if at least one CIT in the k** step returns independent. Let A; C Ay where A; = adj_ j (C1,z;) and
A = adj_;(Cq, ;) denote two adjacency sets differing by the inclusion of additional vertices in As. Denote by
Ti = [A1]x and T3 = [As]k the corresponding sets of size-k conditioning sets. Since A; C As, we have 71 C Ta.
The probability of correct removal is:

P(Y,,, =1|A)=P U {CIT(z;,x; | W) = independent }
WE[A]k

For any fixed false edge n; ; ¢ S*, each CIT has a positive probability of returning independent. Since 7; C 7Tg,
the union over 73 includes all events in the union over 77 plus additional events corresponding to tests on
conditioning sets in 7z \ 71. Therefore:

P(Yn,, =1 A1) <P(Y,,, =1] As)
. Thus, increasing |adj(C, ;)| strictly increases P(Y,,, ; = 1) for false edges. O
D.4 Proof of Lemma D.4
Lemma D.4. For an ordering O containing true edge ngp (where ngp, € 8*) and false edge n; ; (where n; ; ¢

8*), we have that P(Y,, . = 1|Y,,, = 1) = P(Y,, , = 1) while P(Y,,, = 1Y, , = 1) > P(Y,,, = 1). Further,
the inequality is strict when n,; ; and ng p share a vertex.

(2%

Proof. We say an edge is a true edge if it is in S* and a false edge if it is not in S*.

We define P(Y,,, ; = 1]Y,,,, = 1) as the probability of removing a false edge n; ; after correctly retaining a true
edge ng n, and P(Y,, ; = 1) as the probability of removing the false edge n; ; without running a test on n .

If ng n does not share a vertex with n; ; in C, then the adjacency sets of ny; and n;; do not overlap. This
implies that the event of correctly removing a false edge n; ; is independent of the event of correctly retaining a
true edge ng p, as these two events depend only on the data on the node itself and its neighbors. However, if at
least one vertex in ng ; is already in the adjacency set of one of the vertices n; ; in C, then correctly retaining
ng.» does not change the adjacency set of either vertex in n; j;, since retaining an edge means keeping it in the
skeleton without modification, which preserves all existing adjacency relationships and therefore does not alter
which vertices are available for conditioning. This means which tests are run for n; ; don’t change after correctly
testing ng 5, which means the probability of removing n; ; doesn’t change.

We now define P(Y,,, , = 1|Y,,, = 1) as the probability of retaining true edge ng, after correctly removing
false edge n; j, while P(Y,, , = 1) as the probability of correctly retaining true edge n, n without testing n; ;.
Note that if n;; does not share any vertex with ny, in C, then correctly removing n; ; does not affect the
probability of retaining ny ;. However, if they do share at least one vertex, then correctly removing n; ; reduces
the adjacency set of at least one vertex of ng ;. Then by Lemma D.3 the probability of correctly retaining ng 5
strictly increases. U

D.5 Proof of Lemma D.5

Lemma D.5. Given a sequence of edges O that are either true edges (in S*) or false edges (not in S*), for any
pair of adjacent edges consisting of a true edge followed by a false edge, the sequence generated by swapping the
pair is no worse in terms of P [ﬂnesequence Y, = 1}, and strictly better if the false edge and true edge share a

node.

Proof. To establish the lemma, it suffices to show that for any adjacent pair where a true edge n; precedes

a false edge ny, swapping their order weakly improves the joint probability P [ﬂ Y, = 1], with strict

neEsequence 1

improvement when n; and ny share a vertex.

We say an edge is a true edge if it is in S* and a false edge if it is not in S*. Consider a sequence O =
.y, Ny, My, Ny, ... and the swapped sequence O’ = ... n;, ny,ng,n,,..., where n, is a true edge and ny is a
false edge.

From Guess2Graph

The key observation is that we need only compare how the swap affects P(Y,, = 1,Y,, = 1 |
all prior edges in O correctly classified). This is because: (1) edges processed before n; and ny are unaffected by
their relative ordering, and (2) conditioned on both n; and ny being correctly classified, the resulting skeleton
state is identical regardless of their processing order—correctly retaining n; preserves adjacency sets while cor-
rectly removing ny removes it from adjacency sets, and these operations commute. Therefore, the conditional
probabilities for all subsequent edges 7, remain unchanged given correct classification of both n; and ny.

By Lemma D.4, we have:
P(Y,, = 1]Y,, = 1, prior edges correct) = P(Y,,, = 1|prior edges correct)

since correctly retaining true edge n; does not modify adjacency sets and therefore does not affect the probability
of removing false edge ny. However, also by Lemma D.4:

P(Y,, = 1Yy, = 1, prior edges correct) > P(Y;,, = 1|prior edges correct)

with strict inequality when n, and n; share a vertex, since correctly removing n; reduces the adjacency set of
ng, which by Lemma D.3 strictly increases the probability of correctly retaining n;.

Therefore, placing n; before n; (sequence O’) achieves weakly better joint probability than the original ordering
(sequence O), with strict improvement when n, and ny share a vertex. O

D.6 Proof of Lemma 4.1

Lemma 4.1 (Monotonicity of Perfect Recovery in Expert Accuracy). For a fized partial skeleton C and true
DAG G*, let ®gr-a(py) denote the perfect recovery probability when we sample an expert graph G from expert
W with accuracy py, draw n samples from G*, and run EL-G. Then E[®gr-q(py)] increases monotonically with
Dy, strictly increasing when C contains false edges adjacent to true edges.

Proof. We establish that the expected perfect recovery probability E[®gr. ¢ (py)] increases monotonically with
expert accuracy py.

Setup and notation. For a fixed partial skeleton C and true DAG G*, consider running EL-G with expert
accuracy p,. The randomness in this process comes from three sources: (1) the expert’s prediction G sampled
according to accuracy py, (2) the finite-sample data sampled for use in conditional independence tests, and (3)
the random shuffling used when EL-G generates the initial permutation of edges in C within each partition.
Let ®,, denote the probability that EL-G produces the true skeleton §* after sampling from each of the three

sources of randomness. The expectation E[®,] is taken over all three sources of randomness.

Goal. To show monotonicity, we must prove that for py, > py,, we have E[®,, | > E[®,,]. It suffices to show
that @, o stochastically dominates ®,, vyt

Coupling and stochastic dominance. We employ a coupling argument. The following classical result provides
our main tool (see (Lindvall, 1999) for a more abstract discussion of the result, and see Theorem 4.2.3. in (Levin
and Peres, 2023) for a more direct formulation):

Theorem D.1 (Strassen’s Coupling Theorem). The real random variable X stochastically dominates Y if and
only if there exists a coupling (X,Y) of X andY such that P[X > Y] = 1. We refer to (X,Y) as a monotone
coupling of X and Y.

A coupling of random variables X and Y is a joint distribution ()A(,)A/) where X and Y are two entirely different
random variables whose marginal distributions coincide with the distributions of X and Y, respectively. More
formally, a coupling is a probability measure on the product space whose projections onto each coordinate recover
the original distributions. In simpler terms, (X,Y) is constructed such that X has the same distribution as X,
Y has the same distribution as Y, but XandY may be dependent.

Example: Bernoulli couplings. Consider Bernoulli random variables X and Y with P[X = 1] = ¢ and
PY =1]=rwhere 0 <g<r<1.

From Guess2Graph

o Independent coupling: We can construct ()A(J?) where X has the same distribution as X and Y has the
same distribution as Y and they are independent. This gives joint probabilities P[(X,Y) = (i,5)] = P[X =
i|P[Y = j] for i,5 € {0,1}.

* Monotone coupling: Alternatively, sample U uniformly from [0,1], and set X =WU < ¢} and ¥ =
W{U < r}. Then (X Y) is a coupling with IP’[X < Y] = 1, where X and Y still follow the same Bernoulli
distributions as X and Y respectively. This demonstrates that a single source of randomness can induce
dependence while preserving marginals.

Proof strategy. Our proof proceeds in four steps:

1. Describe a hypothetical process for generating a monotone coupling (tfp iy ? <f>p »,) using shared randomness
(analogous to the monotone Bernoulli coupling above). This construction assumes access to the ground truth
skeleton &* and is purely for theoretical analysis. Importantly, Strassen’s theorem only requires showing that
such a monotone coupling is possible to construct, not that we can construct it in practice with knowledge
of only finite samples.

2. Verify that the marginal distributions coincide with the original distributions: ;ISP » 4 ®p,, and (/I;p Y 2
Dy, -
3. Show the coupling is monotone:]P[&)ng > &)Pwl] =
4. Conclude from Strassen’s theorem that E[®,, | > E[®),, |.
D.6.1 Step 1: Describing the Process for Generating the Montone Coupling (&\)ngvapwl)

We construct a coupling between two random variables EI;,, », and 6,, », by describing a hypothetical generative

process that uses shared randomness. In our case, both </Isp », and &)p s, are random variables taking values in
[0, 1] representing the probability of perfect skeleton recovery, and will be designed to have the same marginal
distributions as ®,, and @, respectively.

Sources of shared randomness. We fix the expert accuracies p,, and py,, but allow the expert predictions
G to vary. Our coupling uses three sources of shared randomness:

1. Let ¢ be the number of edges in C. Suppose there are k true edges in C (edges in §* and C) and ¢ — k false
edges (edges in C but not in §*). Let L = [l1,la,...,[.] be a random variable corresponding to a uniformly
sampled permutation of k£ ones and ¢ — k zeros. That is, L contains exactly k entries equal to 1 and ¢ — k
entries equal to 0, where the ordering is uniformly random among all such permutations.

2. A collection of independent uniform random variables R = {ry,rs,..., 7.} where each r; ~ Uniform[0, 1].
These will determine, for each position in L independently, whether the expert correctly classifies the
corresponding edge.

3. Two uniform random permutations: 7w over the k true edges in §*, and wr over the ¢ — k false edges not
in §*. These determine the relative ordering within each partition.

Generating the expert prediction at accuracy py,. We now describe how to sample an expert graph SPu)
with accuracy py, using the shared randomness (L, R, 7r, mp). For each position ¢ in L, the expert independently
classifies the corresponding edge correctly with probability py,:

o If I; = 1 (corresponds to a true edge in S*): the expert correctly predicts this edge exists if r; < py,,
otherwise incorrectly predicts it does not exist.

e If [; = 0 (corresponds to a false edge not in §*): the expert correctly predicts this edge does not exist if
r; < Dy, , otherwise incorrectly predicts it exists.

From Guess2Graph

Constructing the edge ordering OP*1. Given the expert prediction §(W1), we construct the edge ordering
as specified by EL-G (Subroutine 3). Initialize two empty lists By = [], By = []. For each position ¢ in L (going
in the order specified by L)

o If [; = 1 (true edge) and r; < py, (correctly classified): add position i to the end of Bs.

()

o If [; =1 (true edge) and r; > py, (incorrectly classified): add position i to the end of Bj.
0 (
0 (

o If [; = 0 (false edge) and r; < py, (correctly classified): add position 4 to the end of By.
) (

o If [; = 0 (false edge) and r; > py, (incorrectly classified): add position ¢ to the end of Bs.
Concatenate the buckets: L;wl = By + By. Within L%wﬂ assign relative ordering among true edges using
and among false edges using mp to obtain the final edge ordering OPv1.

Computing ‘i)p », - Given the edge ordering (A)pwl, let <T>p », denote the probability of perfect skeleton recovery
by EL (Subroutine 1) if were to randomly draw n finite-samples of the variables V from the DGP G*.

Generating &)p s, using the same randomness. We follow the exact same procedure as above, crucially
reusing the same shared randomness (L, R,mr,7r). The only difference is that we use accuracy py, instead
of py, when determining expert classifications, and redraw a new batch of finite-sample data. This yields a
potentially different expert graph S (Pv2) | a potentially different edge ordering 6pw2, and a potentially different
recovery probability @, .

By this coupling procedure, we generate the joint random variable (Py > C/I;p 0o)

D.6.2 Step 2: Showing the Marginals of the Two Variables Coincide with Original Distributions

d

Our goal is to verify that EI;M1 L @, and @% = ®p,,,. We focus on showing (/Ispwl L9

Dy, follows identically by symmetry.

py,; the argument for

Reduction to orderings. Let OP¥1 denote the random edge ordering generated by Subroutine 3 using expert
accuracy py, , and let OP¥1 denote the random edge ordering generated in our coupling procedure (Step 1) using
accuracy py, . Given any fixed edge ordering, the probability of perfect skeleton recovery when randomly drawing

n finite samples from G* is deterministically fixed. Therefore, the distributions of ®,,, and &)p s, are determined
d
=

entirely by the distributions of OP¥1 and OPv respectively. To show ® it suffices to show that

61’#’1 i QP ,

Dy Pyq

Decomposition of orderings. Any edge ordering O over all ¢ edges can be uniquely decomposed into three
components:

1. mr: the relative ordering (permutation) among the k true edges
2. wp: the relative ordering (permutation) among the ¢ — k false edges
3. mrp: the relative placement of true edges versus false edges (which false/true edges come before which other
true/false edges)
Therefore, the distribution over edge orderings is uniquely determined by the joint distribution over (w1, 7F, 71 F).

We will show that this joint distribution is identical for both OP¥1 and Ops.

Analysis of the coupling procedure. In our coupling construction (Step 1), we explicitly sampled 77 and
mr uniformly and independently. The relative placement 7mrp is then determined by: for each position ¢ in L,
whether ; is correctly classified (with probability p,,) determines whether that edge goes to By or Bs, and then
7 corresponds to the partition structure (B, Bz). Since each edge’s classification is independent and depends
only on its true label and py,, we have:

e 7 is uniform over all permutations of k true edges

From Guess2Graph

e T is uniform over all permutations of (g) — k false edges
e Trp has distribution determined by py, (probability of correct classification)

e Tp,Tp, Trr are mutually independent

Analysis of Subroutine 3. We now show that OP¥1 has the same distributional structure. By construction of
Subroutine 3:

e Edges in C are initially shuffled uniformly at random

e Each edge is independently classified as being in S or not with probability py, of correct classification

e Edges are partitioned into By = C\ S and By =Cn S, , preserving their random ordering within each bucket
To show 77 is uniform: Start with an initial uniform random permutation 7% of all k true edges. Some subset
of size m ~ Binomial(k, 1 — p,,) are misclassified and placed in By, while the remaining k —m are placed in Bs.
For any fixed m and any fixed choice of which m edges are misclassified, this operation defines a bijection from
7Y to the resulting permutation: given the final permutation and knowing which edges went to which bucket,
we can uniquely recover m#, and vice versa. We note that as bijections preserve uniformity, the marginal
distribution of 7 (after marginalizing over m and the choice of which edges) remains uniform. By the same
argument, mp is uniform.

For independence: The distribution of 7w is determined solely by which edges are correctly classified (controlled
by py,). For any fixed realization of mrp (i.e., fixed partition (B, Bs)), the above uniformity argument shows
that 77 and 7 remain uniform. Therefore (77, 7F) are independent of wrp.

Conclusion. Both OP¥1 and OPv: decompose into (7w, g, mrF) where each component has identical marginal
distributions and the same independence structure. Therefore OP¢1 £ OPv1 | which implies fﬁp " L ®,,, - By the

d

same argument, ‘I)PwQ = (I)sz'

D.6.3 Step 3: Showing that the Coupling is Monotone.

o~

Our goal is to show that P[@pr > <f>pw1] = 1. We establish this by showing that the edge ordering OPv2 can be

obtained from OPv1 through a sequence of beneficial swaps.

Structure of the two orderings. Recall from Step 1 that both OP¥1 and OP¥2 are generated using the same
shared randomness (L, R, 7r, 7r). Crucially, the permutations wr (ordering among true edges) and 7 (ordering
among false edges) are identical in both orderings. The only difference lies in the relative placement mrp of true
edges versus false edges, which is determined by which edges are correctly classified.

More edges correctly classified at higher accuracy. Since p;, < py,, for each position ¢ in L:

o If edge i is correctly classified under accuracy py, (i.e., 7; < py,), then it is also correctly classified under
accuracy py, (since r; < py, < py,)

o Additional edges may be correctly classified under py, that were misclassified under py, (those with py, <
Ti < pTl’z)

This means:

e True edges that were correctly placed in By in L% remain in By in L}

e Some true edges that were incorrectly placed in By in L% may move to By in L%? (moving rightward)

e False edges that were correctly placed in By in L"* remain in By in L

e Some false edges that were incorrectly placed in Bs in L%“’l may move to B in Liﬁ”z (moving leftward)

From Guess2Graph

Characterizing the transformation via inversions. To formalize how OPv2 relates to OP¥1, we introduce a
numerical ordering. Assign integers to edges as follows:

e Assign {1,2,...,c— k} to the false edges according to their fixed relative order 7p

o Assign {c—k+1,..., (‘21)} to the true edges according to their fixed relative order

Under this assignment, every false edge has a smaller numerical label than every true edge. An inversion is
any pair of edges that appears out of numerical order—specifically, a true edge appearing before a false edge in
the ordering. Since 7 and 7wp are fixed, edges of the same type (both true or both false) never form inversions
relative to each other.

The transformation from OP#1 to OPv2 only moves true edges rightward and false edges leftward. This process
cannot create new inversions: if a true edge precedes a false edge in OPW that pair must have been in the same
order in OPv1 . Therefore, the set of inversions in OPv: is a subset of the inversions in OP#1.

‘Weak Bruhat order and reachability. The weak Bruhat order on permutations provides a formal framework
for this relationship. A standard result ((Yessenov, 2005), Proposition 2.2) states:

Proposition D.2. For permutations v and w, v < w in weak Bruhat order if and only if Inv(v) C Inv(w),
where Inv(+) denotes the set of inversions.

Equivalently, v can be obtained from w by a sequence of adjacent transpositions (w;,w;4+1) where w; > w; 41 in
the numerical ordering. In our setting, moving a false edge leftward past an adjacent true edge (moving w; 1
left of w;) is precisely such an inversion-reducing swap, since false edges have smaller numerical labels than true
edges.

Since Inv(@pw) C Inv(@pwl), it follows that OP+2 can be obtained from OP*1 through a sequence of adjacent
swaps that move false edges leftward past true edges.

Monotonicity via beneficial swaps. By Lemma D.5, each such swap (placing a false edge before a true
edge) weakly improves the probability of perfect skeleton recovery, with strict improvement when the swapped

edges share a vertex. Since OPv2 is reachable from OPu1 through a sequence of such beneficial swaps, we have

o < o establishing that IP[P <I> 1]

Py, Py k)

D.6.4 Step 4: Conclusion.

It follows from Strassen’s Coupling Theorem that E[®,, | > E[®),, |, with strict inequality when C contains at
least one true edge adjacent to a false edge. We note that when C contains false edges adjacent to true edges,
there are at least one pair of orderings Opwl OPv2 that can be created through the process outlined in Step 1
such that a false edge adjacent to a true edge is swapped to be earlier in the sequence. In that case we have
®,, < ®p, , which implies by the Coupling Theorem that E[®,, | > E[®,, |.

O

D.7 Proof of Lemma D.6

Lemma D.6. Accuracy P(Y,, , = 1) is constant for all possible orderings Ly, Ly, ... of CITﬁdj_ (Comi)-

Proof. Note that in EP (Subroutine 2), edge n; ; is removed when a subset s is found to render x;, z; independent,
i.e. @; U x;|s. This implies that for n; ; to be removed at least one CI test must return independent, and if no
CI tests return independent n; ; will not be removed. Whether at least one CI test returns independent depends
only on which CI tests are run (i.e., what the adjacent set adj_j(C,xi) is), implying that the order L in which
the CI tests are run is irrelevant to whether the edge is removed or not. This implies that the probability of
accuracy P(Y,,, ; = 1) is also independent of ordering. O

From Guess2Graph

D.8 Proof of Lemma D.7

Lemma D.7. Under the assumptions of Definition E.1, if /3 a size k subset of adj_;(C,x;) s; such that
x; AL xj|s;, then any pair of orderings L, L’ achieves the same Elt.,], where tc, is the number of tests conducted
by EP using either L or L.

Proof. Suppose /3 a size k subset s; of adj_;(C,x;) such that x; 1L z;[s;. Then for all CIT(z;,z; | su.) €
CIT’;dj_j(cm), the subset s, is not a d-separating set of x;, z;, meaning all tests should return dependent under
an oracle.

The runtime is determined by when the first test returns independent (or when all tests have been run). By
Definition E.1, since no d-separating sets exist, each CIT falsely returns independent with the same false negative
rate 8, and the outcomes of these tests are mutually independent. Therefore, the timing of when a test will
return independent is the same no matter the order of the tests, implying that E[t., ;] remains constant for all
orderings of tests. U

D.9 Proof of Lemma D.8

Lemma D.8. Under the assumptions of Definition E.1, given a sequence of CITs L for edge n; ;, for any pair
of adjacent CITs consisting of a test on a non-d-separating set sy followed by a test on a d-separating set s, the
sequence L' generated by swapping the pair to place the d-separating test so first achieves strictly better runtime,
i.e., E[t';lj] < E[tléi,j]; where ttm_ is the number of tests conducted by EP under ordering L.

Proof. We say a CIT= T if it returns independent, and CIT= N if it returns dependent (not independent). For
edge n; j, let CITZC»F“p denote a CIT at position 7 in the sequence that tests a d-separating set of x;,z;, and let
CIT7°" denote a CIT at position ¢ that tests a non-d-separating set of z;, z;.

Consider a pair of orderings L,L’ that differ in only two positions, where the tests are swapped: ordering

L=...,CIT}", CITfJ:fep, ..., while ordering L' = ..., CITf_sep, CIT}?Y,.... Under the mutual independence
assumption (Definition E.1), we can simplify the difference between the expected runtimes of the orderings as:
i—1
El]-ElL, = | [[BCIT, = N) | [BCITS > = 1) -
j=1

+ P(CIT{ ™ = N)P(CIT/?" = 1) - (i + 1)]
i—1
— [[]®(CIT; = N) | [P(CIT}" = 1) -
j=1
+ P(CIT}" = N)P(CIT{ 5P = 1) - (i + 1)] (1)
Dividing both sides by the positive value (H;;ll P(CIT; =N)) yields the following on the RHS:

= [P(CIT{*? = I) - i + P(CIT{ *? = N)P(CIT! = 1) - (i + 1)]
— [P(CIT}" = 1) - i + P(CIT}*" = N)P(CIT{ 7 = I) - (i + 1)]. (1)

Filling in the probabilities with the correct false positive and false negative rates (where « is the false positive
rate and is the false negative rate) yields:

(1-a)-i+af(i+1)]=[B-i+(1-B)(1—-a) (i+1)]
(1—a) i+aBi+1)]—-[B-i+(1—-B—a+af)-(i+1)] (1)

We note that both terms in the above equation can be rewritten as weighted sums of 4,7 + 1, with the weights
adding up to 1 —a+ af. Under the assumption that 1 — « > [, this implies that the weight on 7 is higher in the
first term, which implies the weight on i 4 1 is higher in the second term. As ¢ < i+ 1, under the rearrangement
inequality this implies that the sum is negative, and therefore E[t'c:;]] - E[t'e‘”} < 0. O

From Guess2Graph

D.10 Proof of Lemma D.9

Lemma D.9 (Monotonicity of EP Runtime in Expert Accuracy). Under Assumption E.1, let Tgp-g(Pd-sep)
denote the number of tests executed by EP-Guess (Subroutine 4) when testing edge n; ; at conditioning set size
k with expert 1) having d-separation accuracy pg-sep- Then:

(a) E[Tgp-c(Dd-sep)] decreases monotonically with pg.sep, strictly decreasing when [A]y, contains both d-separating
and non-d-separating sets (where A = adj_;(C,x;))

(b) When pg.sep > 0.5, E[Tep-¢(Pd-sep)] < E[Trandom] where Trandom denotes runtime under random ordering

Proof. We establish that the expected runtime E[Tgp-c (Pa-sep)| decreases monotonically with expert d-separation
acCuracy Pd-sep-

Setup and notation. For a fixed partial skeleton C, true DAG G*, edge n; ; € C, and conditioning set size &,
consider running EP-Guess with expert accuracy pq.sep. EP-Guess tests conditional independence CIT(z;, z; |
W) for all W € [A]x where A = adj_;(C,z;), terminating when the first test returns independence. The

randomness in this process comes from three sources: (1) the expert’s prediction Q\ sampled according to accuracy
Dd-sep, (2) the finite-sample data D sampled for use in conditional independence tests, and (3) the random
shuffling used when EP-Guess generates the initial permutation of conditioning sets within each partition. Let
Tp4..., denote the number of tests executed by EP before termination after sampling from each of the three
sources of randomness. The expectation E[T},, .] is taken over all three sources of randomness.

Goal. To show monotonicity, we must prove that for py.sep, > Pd-sep,» we have E[T, | > E[Tp,..,,]- By

Pd-sepq
Strassen’s theorem, it suffices to show that T, stochastically dominates Tj, . -

Coupling and stochastic dominance. We employ a coupling argument. The following classical result provides

our main tool (see (Lindvall, 1999) for a more abstract discussion of the result, and see Theorem 4.2.3. in (Levin
and Peres, 2023) for a more direct formulation):

Theorem D.3 (Strassen’s Coupling Theorem). The real random variable X stochastically dominates Y if and
only if there exists a coupling (X,Y) of X andY such that P[X > Y] = 1. We refer to (X,Y) as a monotone
coupling of X and Y.

A coupling of random variables X and Y is a joint distribution ()? , ?) where X and Y are two entirely different
random variables whose marginal distributions coincide with the distributions of X and Y, respectively. More
formally, a coupling is a probability measure on the product space whose projections onto each coordinate recover
the original distributions. In simpler terms, (X,Y) is constructed such that X has the same distribution as X,
Y has the same distribution as Y, but X and Y may be dependent.

Example: Bernoulli couplings. Consider Bernoulli random variables X and Y with P[X = 1] = ¢ and
PY =1]=rwhere 0 <g<r<1.

e Independent coupling: We can construct ()A(,)A/) where X has the same distribution as X and Y has the
same distribution as Y and they are independent. This gives joint probabilities P[(X,Y) = (i,4)] = P[X =
i|P[Y = 4] for 4,5 € {0, 1}.

e Monotone coupling: Alternatively, sample U uniformly from [0,1], and set X = K{U < ¢} and Yy =
W{U < r}. Then ()A(,}/}) is a coupling with IP’[)? <)A’] =1, where X and Y still follow the same Bernoulli
distributions as X and Y respectively. This demonstrates that a single source of randomness can induce
dependence while preserving marginals.

Proof strategy. Our proof proceeds in four steps:

~

1. Describe a hypothetical process for generating a monotone coupling (T}, d-sepy ? fp d_Sepz) using shared random-
ness (analogous to the monotone Bernoulli coupling above). This construction assumes access to the ground
truth DAG G* and is purely for theoretical analysis. Importantly, Strassen’s theorem only requires show-
ing that such a monotone coupling is possible to construct, not that we can construct it in practice with

knowledge of only finite samples.

From Guess2Graph

2. Verify that the marginal distributions coincide with the original distributions: fp dosep, & Ty ey, and
5 d
Tpd-sep2 = Pd-sepg *
3. Show the coupling is monotone: P[T}, ... > Ty, ...,] = 1.
4. Conclude from Strassen’s theorem that E[T}, . | > E[T}, ..].
D.10.1 Step 1: Describing the Process for Generating the Monotone Coupling (fpd—sepl’fpd—sepz)

We construct a coupling between two random variables fp deeep, a0d fp d.sepy DY describing a hypothetical generative
process that uses shared randomness. Both random variables take values in positive integers representing the
number of tests executed before EP terminates, and will be designed to have the same marginal distributions as

T, and 7T, respectively.

Pd-sepy Pd-sepo
Sources of shared randomness. We fix the expert accuracies pysep, and pq.sep,, the conditioning set size
k, and allow the expert predictions G to vary. For edge n;; with adjacency set A = adj_;(C,z;), EP-Guess

considers all size-k subsets of A, i.e., all W € [A]j. Let ¢ = |[A]x| denote the total number of such conditioning
sets. Our coupling uses three sources of shared randomness:

1. We partition the size-k conditioning sets in [A]; based on true d-separation in G*. Suppose there are m
sets in [A], that d-separate x;,z; in G* (d-separating sets) and ¢ — m sets that do not (non-d-separating
sets). Let L = [ly,1a,...,l.] be a random variable corresponding to a uniformly sampled permutation of m
ones and ¢ — m zeros. That is, L contains exactly m entries equal to 1 (indicating d-separating sets) and
¢ —m entries equal to 0 (indicating non-d-separating sets), where the ordering is uniformly random among
all such permutations.

2. A collection of independent uniform random variables R = {rq,rz,...,r.} where each r; ~ Uniform[0, 1].
These will determine, for each position in L independently, whether the expert correctly classifies the
corresponding conditioning set.

3. Two uniform random permutations: mq.sep Over the m d-separating sets in [A]x, and Tpon-d-sep Over the c—m
non-d-separating sets in [A];. These determine the relative ordering within each partition.

Generating the expert prediction at accuracy pg-sep,- We now describe how to sample an expert graph
G(Pa-ser1) with d-separation accuracy pd-sep, using the shared randomness (L, R, Td-sep; Tnon-d-sep)- For each
position ¢ in L, the expert independently classifies the corresponding conditioning set correctly with probability
Pd-sep;

e If [; = 1 (corresponds to a true d-separating set in G*): the expert correctly predicts this set d-separates
x;,xj if r; < Ppasep,, otherwise incorrectly predicts it does not d-separate.

e If I; = 0 (corresponds to a non-d-separating set): the expert correctly predicts this set does not d-separate
xi, x5 if ry < Pd-sep, » Otherwise incorrectly predicts it d-separates.

Constructing the conditioning set ordering LPa-sep1. Given the expert prediction é(pd-sepl), we construct
the conditioning set ordering as specified by EP-Guess (Subroutine 4). Initialize two empty lists By =[], B2 = [].
For each position 4 in L (going in the order specified by L):

If [; = 1 (d-separating set) and r; < py.sep, (correctly classified): add position i to the end of B; (predicted
d-separating sets tested first).

If [; = 1 (d-separating set) and r; > pa.sep, (incorrectly classified): add position i to the end of Bs.

If [; = 0 (non-d-separating set) and r; < pg.sep, (correctly classified): add position i to the end of Bs.

If [; = 0 (non-d-separating set) and r; > pa_sep, (incorrectly classified): add position ¢ to the end of B;.

From Guess2Graph

Concatenate the buckets: L%d’“pl = B; + B;. Within Lgd’scpﬂ assign relative ordering among d-separating sets
using mq-sep and among non-d-separating sets using mhon-d-sep t0 obtain the final conditioning set ordering LPd-sep1

Computing fp dasep, + Given the conditioning set ordering LPa-sers | Jet fp deop, denote the expected number of

tests executed by EP (Subroutine 2) before termination if we were to randomly draw n finite samples from the

~

DGP G* and run tests according to LPd-sep1,

Generating fp dasep, USING the same randomness. We follow the exact same procedure as above, cru-
cially reusing the same shared randomness (L, R, Td-sep, Tnon-d-sep)- Lhe only difference is that we use accuracy
Dd-sep, instead of pg.gep, When determining expert classifications. This yields a potentially different expert graph
Q:(pd-sepz), a potentially different conditioning set ordering E”d-sePZ, and a potentially different expected runtime

Tpd-sep2 .

By this coupling procedure, we generate the joint random variable (fp deseny ? Lpaceeps)
D.10.2 Step 2: Showing the Marginals of the Two Variables Coincide with Original
Distributions

4 4

T,

Pd-sepq

We focus on showing T the

Pd-sepy

and T

Dd-sepsy

T,

Pd-seps *

Our goal is to verify that fp 4

d-se Pd-se
argument for py_sep, follows ideilltically byplsymmetry.
Reduction to orderings. Let LPd=r1 denote the random conditioning set ordering generated by Subroutine 4
using expert accuracy pd.sep,, and let LPd=ep1 denote the random conditioning set ordering generated in our
coupling procedure (Step 1) using accuracy pd-sep,- Given any fixed conditioning set ordering, the expected
number of tests executed when randomly drawing n finite samples from G* is deterministically fixed. Therefore,
the distributions of 7, and T, .~ are determined entirely by the distributions of LPd-=er1 and LPd-=er:

Pd-sep;
respectively. To show fp 4T , it suffices to show that LPd-sep: 2 | pdssens

d-sepy Pd-sep;

Decomposition of orderings. Any conditioning set ordering L over all ¢ conditioning sets can be uniquely
decomposed into three components:

1. Tasep: the relative ordering (permutation) among the m d-separating sets
2. Thon-d-sep: the relative ordering (permutation) among the ¢ — m non-d-separating sets

3. et the relative placement of d-separating sets versus non-d-separating sets (which sets come before which
other sets)
Therefore, the distribution over conditioning set orderings is uniquely determined by the joint distribution over
(Td-sep> Tnon-d-seps Trel). We will show that this joint distribution is identical for both LPd-see1 and LPd-ser1,

Analysis of the coupling procedure. In our coupling construction (Step 1), we explicitly sampled 74 sep and
Thon-d-sep UNiformly and independently. The relative placement 7. is then determined by: for each position 4 in
L, whether [; is correctly classified (with probability py_sep,) determines whether that conditioning set goes to By
or By, and then 7, corresponds to the partition structure (Bj, Bs). Since each conditioning set’s classification
is independent and depends only on its true d-separation status and pq.sep,, we have:

® T gep is uniform over all permutations of m d-separating sets
® Thon-d-sep 15 uniform over all permutations of ¢ — m non-d-separating sets
® Tl has distribution determined by pq.sep, (probability of correct classification)

® T sep; Mnon-d-sep, Trel are mutually independent

Analysis of Subroutine 4. We now show that LPd=er1 has the same distributional structure. By construction
of Subroutine 4:

e Conditioning sets in [A]; are initially shuffled uniformly at random

From Guess2Graph

e Each conditioning set is independently classified based on whether it d-separates in é with probability pa-sep,
of correct classification

e Sets are partitioned into By (predicted d-separating) and By (predicted non-d-separating), preserving their
random ordering within each bucket

To show Tggep is uniform: Start with an initial uniform random permutation Wi{fistep of all m d-separating sets.
Some subset of size £ ~ Binomial(m, 1 — pg_sep,) are misclassified and placed in By, while the remaining m — ¢
are placed in By. For any fixed ¢ and any fixed choice of which ¢ sets are misclassified, this operation defines a
bijection from wzlrﬁistep to the resulting permutation: given the final permutation and knowing which sets went to
which bucket, we can uniquely recover Wid’f;tep, and vice versa. Since bijections preserve uniformity, the marginal
distribution of mggep (after marginalizing over ¢ and the choice of which sets) remains uniform. By the same
argument, Tpon-d-sep 1S Uniform.

For independence: The distribution of .. is determined solely by which conditioning sets are correctly classified
(controlled by pq.sep,). For any fixed realization of m. (i.e., fixed partition (Bi,B2)), the above uniformity
argument shows that 7g.sep and Tnon-d-sep remain uniform. Therefore (Td-sep, Tnon-d-sep) are independent of mye.
Conclusion. Both LPa=sep1 and LPa-ser: decompose into (Td-sep, Tnon-d-seps Trel) Where each component has iden-
tical marginal distributions and the same independence structure. Therefore LPasers & LPd-sep1 - which implies
~ d

T, =T,

= d
Pd-sep; Pd.sep, - BY the same argument, T}, =T,

d-sepy Pd-seps *

D.10.3 Step 3: Showing that the Coupling is Monotone

Our goal is to show that]P’[fpd_sep1 > fp

ordering LPd-ser2 can be obtained from LPd-ser1 through a sequence of runtime-reducing swaps.

= 1. We establish this by showing that the conditioning set

-

Structure of the two orderings. Recall from Step 1 that both LPasers and LPa-serz are generated using
the same shared randomness (L, R, Td-sep, Tnon-d-sep). Crucially, the permutations mq.gep (ordering among d-
separating sets) and Tpon-d-sep (Ordering among non-d-separating sets) are identical in both orderings. The only
difference lies in the relative placement 7, of d-separating sets versus non-d-separating sets, which is determined
by which conditioning sets are correctly classified.

More sets correctly classified at higher accuracy. Since pq.sep, < Pd-sep, for each position i in L:

e If conditioning set i is correctly classified under accuracy pq-sep, (i-e., 73 < Dd-sep 1)7 then it is also correctly
classified under accuracy pa-sep, (since 7; < pa-sep, < Pd-sep,)

e Additional sets may be correctly classified under py.sep, that were misclassified under pysep, (those with
Pdsep, < Ti < pd—sep2)

This means:

e D-separating sets that were correctly placed in By in L’}d'sepl remain in B in L%d'sepz

e Some d-separating sets that were incorrectly placed in By in Li’,d'sepl may move to Bj in Lif'sep? (moving
leftward)

e Non-d-separating sets that were correctly placed in By in L’}d'sepl remain in By in L%d'sep"‘

e Some non-d-separating sets that were incorrectly placed in By in L%d'sepl may move to By in L%d'sem (moving
rightward)

Characterizing the transformation via inversions. To formalize how LPd-sep2 relates to LPd-ser1 | we introduce
a numerical ordering. Assign integers to conditioning sets as follows:

o Assign {1,2,...,m} to the d-separating sets according to their fixed relative order m4.sep

From Guess2Graph

o Assign {m+1,...,c} to the non-d-separating sets according to their fixed relative order myon-d-sep

Under this assignment, every d-separating set has a smaller numerical label than every non-d-separating set. An
inversion is any pair of conditioning sets that appears out of numerical order—specifically, a non-d-separating
set appearing before a d-separating set in the ordering. Since mg.sep and Tpon-d-sep are fixed, sets of the same
type (both d-separating or both non-d-separating) never form inversions relative to each other.

The transformation from LPa=er1 to LPa-ser only moves d-separating sets leftward and non-d-separating sets
rightward. This process cannot create new inversions: if a non-d-separating set precedes a d-separating set in
LPd-sep2 | that pair must have been in the same order in LP4-=ep1. Therefore, the set of inversions in LPd-=er2 is a
subset of the inversions in LPd-sep1.

Weak Bruhat order and reachability. The weak Bruhat order on permutations provides a formal framework
for this relationship. A standard result ((Yessenov, 2005), Proposition 2.2) states:

Proposition D.4. For permutations v and w, v < w in weak Bruhat order if and only if Inv(v) C Inv(w),
where Inv(+) denotes the set of inversions.

Equivalently, v can be obtained from w by a sequence of adjacent transpositions (w;,w;y1) where w; > w;y1
in the numerical ordering. In our setting, moving a d-separating set leftward past an adjacent non-d-separating
set (moving w; left of w;11) is precisely such an inversion-reducing swap, since d-separating sets have smaller
numerical labels than non-d-separating sets.

Since Inv(tpd»sepz) C Inv(Epd»sepl), it follows that LPa-=r2 can be obtained from LPé-=er1 through a sequence of
adjacent swaps that move d-separating sets leftward past non-d-separating sets.

Monotonicity via runtime-reducing swaps. By Lemma D.8, each such swap (placing a d-separating set
before a non-d-separating set) strictly decreases the expected number of tests executed. Since LPa-seps is reachable

from LPa-sers through a sequence of such runtime-reducing swaps, we have Tp dsepy 2 fp dsepy » €Stablishing that
P[Tpdfscpl > Tpd SLDQ] =1L

D.10.4 Step 4: Conclusion

| = E[T
CITY, _,(C,z;) contains at least one d-separating set and one non-d-separating set. When such mixed sets exist,

It follows from Strassen’s Coupling Theorem that EI[T, with strict inequality when

Pd-sep; Pd-sepg]’

there is at least one pair of orderings LPa-sens L”cl sev2 that can be created through the process outlined in Step
1 such that a d-separating set is swapped to be earlier in the sequence. In that case we have Ty, ..~ >Tp, ...
which implies by the Coupling Theorem that E[T,] > E[T,

Pd-sepj Pd- sep2]

For part (b), observe that when pq.scp = 0.5, the expert’s predictions are independent of the true d-separation
structure, producing orderings distributionally equivalent to random orderings. Therefore E[Tgp.¢(0.5)] =
E[T andom]- Part (a) then implies E[Tp-G (Pd-sep)] < E[Trandom] for all pg-sep > 0.5.

O

D.11 Proof of Theorem 5.1

Theorem 5.1 (Asymptotic Correctness). Under a consistent conditional independence test, for both PC-Guess
and gPC-Guess, lim,, o P(G = G*) =1

Proof. We will first show that, under the assumption of oracle CITs (CITs that always return independence when
conditioning on a d-separating set and dependence if not), both PC-Guess and gPC-Guess return the correct
graph. We will then note that the probability that either method returns the incorrect graph is upper bounded
by the probability that at least one CIT run returns an incorrect result. We will conclude by noting that, under a
consistent CIT, the probability that any CIT test returns independence goes to 0, yielding lim,, ., P(G = G*) =1

We note that, with access to oracle CIT, PC has previously been shown to always return the correct graph when
using any ordering of the vertices any ordering O to guide EL, and by Lemma (Spirtes, 2001), and suborderings

From Guess2Graph

L given to EP do not affect whether EP will remove an edge or retain it (Lemma D.6). Therefore, PC-Guess
returns the true graph with correct (in)dependence results from tests.

We note that gPC-Guess performs a single pass of the EL, running EP with CITs conditioning on subsets of size
0 to |V| — 1. Then, the correctness of gPC-Guess with access to oracle CITs follows directly from Lemmas D.1,
D.2).

Now we establish the asymptotic result with consistent CITs. Let K denote the maximum number of CIT tests
that could possibly be run by either PC-Guess or gPC-Guess. Since the number of vertices |V| is fixed, K is
finite—specifically, K < |V|? - 21VI=2, as each test involves choosing two variables and a conditioning set from
the remaining vertices.

For each possible test 7 involving variables X,Y and conditioning set S, let Eﬁn) denote the event that test 7
returns an incorrect result when run on sample size n. By the oracle correctness established above, the algorithm
returns the incorrect graph only if at least one test returns an incorrect result. Therefore:

P(G#G) <P < U E@)

TE€tests run

Since the set of tests actually run is a subset of all K possible tests, we have:

K K
P(G#G") <P <U Eﬁ’”) < Z[[D(EQL))

T=1
where the final inequality follows from the union bound.
By the consistency assumption, for each test 7, we have lim,,_,]P’(Egn)) = 0. Since K is finite:

K K
: >) < i (n)y — i (n)y —
Jm PG #07) < Jim 3 PUE) =3 Jim P(EE) =0

Therefore, lim,,_ oo IP’(Q =G*)=1.

D.12 Proof of Theorem 5.2

Theorem 5.2 (Performance of PC-Guess). PC-Guess satisfies C2-C3 at per-iteration level: (a) E[®,] increases
monotonically with py; (b) For fized py, Elty] decreases monotonically with py.sep; (¢) When py > 0.5, E[®/] >
E[®/].

Proof. We prove each part separately.

Part (a): The monotonic increase in E[®,] with p, follows directly from Lemma 4.1. For any iteration ¢ with
partial skeleton C, EL-G (Subroutine 3) partitions edges based on expert predictions and processes false edges
before true edges. By Lemma 4.1, as expert accuracy py increases, the expected perfect recovery probability
E[®/] increases monotonically. By Lemma 4.1 this inequality is strict when C contains both true edges (edges in
S*) and false edges (edges not in §*) and G is a nonempty and non-fully connected graph.

Part (b): Under the assumption of Definition E.1, the monotonic decrease in E[ty] with pq.gep follows directly
from Lemma D.9. For fixed expert edge accuracy py, as d-separation prediction accuracy pq.sep increases, when
testing any edge using its adjacency set, EP-G (Subroutine 4) places d-separating sets earlier in the test sequence,
reducing the expected number of tests E[ty] conducted before finding a d-separating set or exhausting all tests.
Note that the distribution over how likely an edge will be tested with a particular adjacency set remains fixed
due to py remaining fixed. The strict inequality occurs when at least one edge in C is tested with a sequence of
CITs where at least one CIT conditions on a subset which d-separates that edge, and one other CIT does not
condition on a subset which d-separates that edge. This occurs exactly when C contains at least one false edge

From Guess2Graph

where at least one vertex in the edge has an adjacency set that contains at least one d-separating subset and one
non-d-separating subset.

Part (c): When py = 0.5, the expert classifies each edge as true or false with equal probability. The procedure
in EL-G (Subroutine 3) then partitions the edges into two sets and orders them as O = C\§+Cﬂ§, with random
ordering within each partition. Since each edge is assigned to each partition with probability 0.5 independently,
and edges within each partition are randomly ordered, this is equivalent to sampling a uniformly random ordering
of all edges in C. Therefore, when py, = 0.5, PC-Guess has the same distribution over orderings as the baseline
PC (which uses uniformly random orderings), implying E[®,] = E[®/] at p,, = 0.5. Combined with part (a),
which establishes that E[®,] increases monotonically with py,, we have E[®,] > E[®] for all p, > 0.5. O

D.13 Proof of Theorem 5.3

Theorem 5.3 (Performance of gPC-Guess). gPC-Guess satisfies C2-C3: (a) E[®] increases monotonically
with py; (b) For fized py, E[t] decreases monotonically with py-sep; (¢) When py > 0.5, E[@] > E[D].

Proof. We prove each part separately.

Part (a): The monotonic increase in E[®] with py, follows directly from Lemma 4.1. gPC-Guess runs EL once on
the complete skeleton C, where EL-G (Subroutine 3) partitions edges based on expert predictions and processes
false edges before true edges. By Lemma 4.1, as expert accuracy p, increases, the expected perfect recovery
probability E[®] increases monotonically. By Lemma 4.1 this inequality is strict when C contains both true edges
(edges in §*) and false edges (edges not in S*). Since gPC-Guess starts with the complete skeleton, C contains
both true and false edges whenever G is a nonempty and non-fully connected graph.

Part (b): Under the assumption of Definition E.1, the monotonic decrease in E[t] with pq.sep follows directly
from Lemma D.9. For fixed expert edge accuracy py, as d-separation prediction accuracy pq.sep increases, when
testing any edge using its adjacency set, EP-G (Subroutine 4) places d-separating sets earlier in the test sequence,
reducing the expected number of tests E[t] conducted before finding a d-separating set or exhausting all tests.
Note that the distribution over how likely an edge will be tested with a particular adjacency set remains fixed
due to py remaining fixed. The strict inequality occurs when at least one edge in C is tested with a sequence
of CITs where at least one CIT conditions on a subset which d-separates that edge, and one other CIT does
not condition on a subset which d-separates that edge. This occurs exactly when G* is not entirely empty (all
subsets are d-separating), or entirely connected (no subsets are d-separating).

Part (c): When py, = 0.5, the expert classifies each edge as true or false with equal probablhty The procedure
in EL-G (Subroutine 3) then partitions the edges into two sets and orders them as O = C \S +CNS, with random
ordering within each partition. Since each edge is assigned to each partition with probability 0.5 independently,
and edges within each partition are randomly ordered, this is equivalent to sampling a uniformly random ordering
of all edges in C. Therefore, when p;, = 0.5, gPC-Guess has the same distribution over orderings as the baseline
gPC (which uses uniformly random orderings), implying E[®] = E[®] at p, = 0.5. Combined with part (a),
which establishes that E[®] increases monotonically with p,, we have E[®] > E[®] for all p;, > 0.5. O

From Guess2Graph

E Theoretical Details Concerning EP-G and its Guarantees

In this appendix, we provide the complete theoretical analysis for guiding the Edge Prune (EP) subroutine with
expert predictions. While Section 4.3 established that EP orderings cannot affect accuracy (only runtime), we
formalize here the full analysis: when and how different orderings impact computational efficiency, what ordering
principles are optimal, and how expert accuracy translates to monotonic runtime improvements.

E.1 The Edge Prune Subroutine and Ordering Choices

Recall that the EP subroutine (Subroutine 2) is called by constraint-based algorithms to test individual edges e; ;
at a fixed conditioning set size k. Given the current skeleton C, EP computes the adjacency set A = adj_; (C,x;)
and tests conditional independence for all size-k subsets W C A. The subroutine terminates as soon as any test
CIT(z;,z; | W) returns independence, at which point edge n; ; is removed from the skeleton.

Let CITY := {CIT(zs,2; | W) : W C A,|[W| = k} denote the collection of all possible size-k conditional
independence tests for this edge. The EP subroutine requires an ordering L that specifies the sequence in which
these tests are executed. Our goal is to understand how the choice of L affects algorithm performance.

E.2 Accuracy is Invariant to Ordering

We begin by establishing that EP orderings cannot affect the probability of correctly deciding edge n; ;:
Lemma D.6. Accuracy P(Y,, , = 1) is constant for all possible orderings Ly, L, ... of CITﬁdj_j(CM).

Proof sketch. Edge n;; is removed if and only if at least one test in CITZ returns independence. Since
each test’s outcome depends only on the data, the variables tested, and the conditioning set—not the execution
order—the probability of correct removal or retainment of the edge depends only on which tests are run, not
their sequence. See Appendix D.7 for full proof.

This result implies that unlike EL (where edge ordering affects accuracy via adjacency set modifications), EP
orderings leave the correctness probability unchanged. Our focus therefore shifts to computational efficiency.

E.3 When Orderings Affect Runtime

While accuracy is invariant, the computational cost—measured by the number of tests executed before EP
terminates—varies across orderings. To understand when and why, we partition CIT’IZ based on the true d-
separation structure of G*:

o CITS*P := {CIT(zs,2; | W) : W d-separates x;, z; in G*}

o CIT)"™P .= CITH \ CIT} ™

Tests in CITisep have high probability of returning independence (specifically 1 — «, where « is the Type I error
rate), while tests in CIT Zon'd'%p have low probability of returning independence (specifically 3, the Type II error
rate or power deficit).

Lemma D.7. Under the assumptions of Definition E.1, if /3 a size k subset of adj_;(C,x;) s; such that
x; AL xj|s;, then any pair of orderings L,L" achieves the same Elt.,], where tc, , is the number of tests conducted
by EP using either L or L.

€ij

Proof sketch. When no d-separating sets exist, all tests return independence with identical probability g
(the false negative rate). Under mutual independence of test outcomes, the expected stopping time follows a
geometric distribution with parameter 3, which is invariant to the ordering of tests. See Appendix D.8 for full
proof.

This lemma reveals the key insight: runtime optimization is only possible when CIT]Z contains both d-separating
and non-d-separating sets. In such cases, strategic ordering can significantly reduce computational cost.

From Guess2Graph

E.4 Optimal Ordering Principles

We now characterize orderings that minimize expected runtime. Our analysis relies on standard technical as-
sumptions from the conditional independence testing literature:

Assumption E.1 (CIT Specificity and Independence). We assume:

(i) Adequate Specificity: 1—a > (3, i.e., the true negative rate (probability of correctly detecting independence
when it exists) exceeds the false negative rate (probability of failing to detect dependence when it exists). This
holds asymptotically as sample size n — oo under standard reqularity conditions.

(i1) Conditional independence of tests: For any two distinct conditioning sets Wy, Wy C A, the outcomes
of CIT(x;,x; | W1) and CIT(x;,x; | W2) are (conditionally) independent given the data. This holds asymp-
totically under faithfulness and sufficient sample size.

Remark on assumptions. Assumption E.1(ii) is a technical simplification that ensures tractability. In practice,
test outcomes are not strictly independent due to shared data and overlapping conditioning sets. However, our
main result—that d-separating sets should be placed first—likely holds under weaker conditions. Specifically, we
conjecture that the monotonicity guarantee (Lemma D.9) extends to any setting where: (a) tests on d-separating
sets have strictly higher independence probability than tests on non-d-separating sets, and (b) test outcomes
exhibit limited positive dependence. A rigorous proof under these relaxed conditions remains an open problem,
but the intuition is clear: placing high-probability tests first reduces expected runtime regardless of the specific
dependence structure among tests.

Under Assumption E.1, we can precisely characterize optimal orderings:

Lemma D.8. Under the assumptions of Definition E.1, given a sequence of CITs L for edge n; ;, for any pair
of adjacent CITs consisting of a test on a non-d-separating set sy followed by a test on a d-separating set so, the
sequence L' generated by swapping the pair to place the d-separating test so first achieves strictly better runtime,
i.e., E[tg7] < E[tti)j], where tl@_i,j is the number of tests conducted by EP under ordering L.

Proof sketch. Consider orderings L and L’ differing only in positions 7 and ¢ + 1, where L places a non-
d-separating test before a d-separating test, and L’ swaps them. The expected runtime difference equals
P(all prior tests fail) - [(1 —«a) - i+ af(E+1)] —[f-i+ (1 — B)(1 — a)(¢+1)]. Since 1 — a > f, the first
term places more weight on ¢ while the second places more weight on ¢ + 1. By the rearrangement inequality,
this difference is negative, establishing E[t'e'/ | < E[t'e']] See Appendix D.9 for full proof.

j
This lemma establishes a clear ordering principle: placing d-separating sets before non-d-separating sets min-
imizes expected runtime. Any ordering that violates this principle can be improved by swapping adjacent
“inversions.”

E.5 Expert-Guided Algorithm with Monotonicity Guarantees

Building on Lemma D.8, we design EP-Guess (Subroutine 4) to leverage expert predictions of d-separating sets.
The algorithm extracts all d-separating sets D;; from the expert graph G and constructs ordering L by placing

predicted d-separating sets ([A]x N ﬁ”) before predicted non-d-separating sets ([A]x \ ﬁij), with random order
within each partition.

We model expert 1’s d-separation predictions using the same framework as edge predictions: for any pair (x;, ;)
and conditioning set W, the expert independently predicts whether W d-separates z;,z; in G* with accuracy
Dd-sep- This can be formalized as a binary symmetric channel where the expert observes the true d-separation
status and reports it correctly with probability pq-sep-

Lemma D.9 (Monotonicity of EP Runtime in Expert Accuracy). Under Assumption E.1, let Tep-g(Pd-sep)
denote the number of tests executed by EP-Guess (Subroutine 4) when testing edge n; ; at conditioning set size
k with expert 1) having d-separation accuracy pg-sep- Then:

(a) E[TEp-c(Dd-sep)| decreases monotonically with py.sep, strictly decreasing when [A]y contains both d-separating
and non-d-separating sets (where A = adj_;(C,x;))

From Guess2Graph

(b) When pg-sep > 0.5, E[TEp-¢(Pd-sep)] < E[Trandom] where Trandom denotes runtime under random ordering

Proof sketch. The proof (App. D.10) establishes monotonicity via a coupling argument between experts with
accuracies pq-sep, < Pd-sep,- BOth experts observe the same true d-separating sets and use identical randomness
for classification, but the higher-accuracy expert makes fewer errors. This ensures that every conditioning set
correctly classified by the weaker expert is also correctly classified by the stronger expert.

Consequently, the better expert’s ordering has fewer “inversions” (non-d-separating sets incorrectly placed before
d-separating sets). The better ordering can be obtained from the weaker ordering through a sequence of adjacent
swaps that move d-separating sets leftward past non-d-separating sets. By Lemma D.8, each such swap strictly
decreases expected runtime.

Since the better expert’s ordering is reachable through runtime-reducing swaps, it achieves pointwise improve-
ment for any fixed realization of data and expert predictions. Strassen’s Coupling Theorem then implies that
Tep-G (Pd-sep 2) stochastically dominates TEp_G(pd_sepl) in the first-order sense, yielding monotonicity in expecta-
tion. Part (b) follows from observing that pg.sep = 0.5 produces orderings distributionally equivalent to random
orderings.

E.6 Discussion and Comparison to Edge Loop Guidance

These results establish that EP-Guess provides complementary benefits to EL-Guess:

e EL-Guess (Section 4.2): Improves accuracy by prioritizing false edges, thereby reducing adjacency set
inflation and improving the probability of correct edge decisions. The benefit is measured by increased
perfect recovery probability ®.

e EP-Guess (this section): Improves computational efficiency by prioritizing d-separating sets, thereby in-
creasing early termination probability. The benefit is measured by decreased expected runtime E[T.

Both forms of guidance share the same underlying structure:

1. Identify an ordering principle that universally improves performance (false edges first for EL; d-separating
sets first for EP)

2. Model the expert as a binary symmetric channel predicting the relevant classification
3. Use coupling arguments to prove monotonic improvement with expert accuracy

4. Establish robustness: performance is never worse than random when expert accuracy > 0.5

The main technical difference is that EL guidance affects accuracy (via adjacency set modifications), while EP
guidance affects only runtime (leaving accuracy invariant). This difference arises because EP operates at a fixed
conditioning set size, testing all relevant subsets regardless of order, whereas EL modifies the graph structure
dynamically, affecting which tests are even possible for subsequent edges.

In practice, both forms of guidance can be applied simultaneously: EL-Guess sequences edges optimally (priori-
tizing false edges), and within each edge’s testing, EP-Guess sequences conditioning sets optimally (prioritizing
predicted d-separating sets). The combined algorithm achieves both accuracy improvements and computational
speedups when expert predictions are accurate.

From Guess2Graph

F Extract Ordering Subroutine

Subroutine F.1 Extract Orderings from Expert (EOE)

: Inputs: Expert ¢, complete skeleton C . .
: Obtain G from . Extract skeleton S and d-separating sets D from G

1
2
3: Randomly order C and [V]jy|—1. Set O =C\ S+CcnSandL = ([V}l;m,l ﬂﬁ) + ([V}Hw,l \75)
4: return O, L

Subroutine F.1 extracts orderings O,L from an expert’s guess of the causal DAG G. It combines the first few
steps of both Subroutine 3 and 4.

From Guess2Graph

G Suboptimality of PC-Guess under Perfect Guidance

We demonstrate that PC-Guess’s level-by-level structure can prevent it from fully exploiting expert guidance,
even when the expert provides perfect predictions. This inefficiency stems from PC’s statistical conditioning
bias, which prioritizes testing smaller conditioning sets before larger ones regardless of expert predictions.

The core limitation. When an expert correctly identifies a false edge n;; and places it early in the edge
ordering O, PC-Guess can only remove this edge once it reaches conditioning set size ¢ = k, where k is the size of
the minimal d-separating set for x; and z;. At all prior levels £ € {0,1,...,k — 1}, PC-Guess must test the edge
and find dependence, leaving the false edge in the skeleton. During these early levels, this retained false edge
inflates the adjacency sets of z; and x;, forcing unnecessary conditioning set tests for all other edges incident to
these vertices.

Concrete example: 4-node chain. Consider the true causal graph G* : 1 — x2 — 3 — x4. The complete
initial skeleton C contains 6 edges: three true edges {ni 2,n2.3, 134} and three false edges {n1,3,n1,4,n24}. The
false edge n1 4 has minimal d-separating set {z2} of size k = 1. Suppose the expert provides perfect guidance
by placing n 4 first in the ordering O. At level £ = 0, PC-Guess tests ny 4 with conditioning set () and finds
dependence (correct, due to the chain path), leaving the false edge in the skeleton. Because n; 4 remains, all
subsequent level-O tests of edges involving x; or x4 use inflated adjacency sets: when testing n; o, we have
adj_o(C,z1) = {z3,24} instead of {z3}; when testing nz 4, we have adj_,(C,z3) = {x1,z2} instead of {xs}.
Only at level £ =1 does PC-Guess test n1 4 with {z2} and successfully remove it. The inefficiency: PC-Guess
performed one guaranteed-to-fail test of n; 4 at level 0, plus all level-0 tests of edges incident to x; or x4 used
unnecessarily large adjacency sets—waste that scales as O(d?) for chains of length d, all avoidable if the algorithm
could immediately test n; 4 with its minimal d-separator.

Conclusion. This example demonstrates that PC-Guess’s adherence to the level-by-level structure prevents
it from fully exploiting perfect expert guidance. The algorithm must exhaust all smaller conditioning set sizes
before testing the conditioning set size that would actually remove the false edge, wasting both direct tests on
the false edge and indirect tests on neighboring edges with inflated adjacency sets. This motivates gPC-Guess
(Section 5.2), which eliminates the level-by-level constraint and allows immediate testing with conditioning sets
of any size, enabling the algorithm to act on expert predictions without delay.

From Guess2Graph

H Experimental Details

H.1 Synthetic Data Generation Parameters

We generate synthetic data using linear Gaussian structural equation models on Erdds-Rényi (ER) random
graphs. The data generation process follows these steps:

e Graph Structure: We generate d-dimensional DAGs using the Erdés-Rényi model where edges are added
independently with probability peqge. The DAG property is ensured by making the adjacency matrix lower
triangular, preventing cycles and self-loops.

e Edge Weights: For each edge in the binary adjacency matrix, we assign weights sampled uniformly from
[—2.5,—1.5] U [1.5,2.5] to avoid faithfulness violations that occur when weights are near zero.

e Data Generation: Each variable x; follows the linear structural equation model:

Ty = E Wyji T4 +&;
j€Pa(z;)

where wj; are the edge weights and ¢; ~ N(0,1) are independent Gaussian noise terms with mean 0 and
variance 1.0. All noise terms are generated independently across variables and samples.

e Standardization: All generated data is standardized to zero mean and unit variance to ensure fair com-
parison across different graph structures.

e Variable Randomization: Before feeding data to any causal discovery method, we randomly permute the
order of variables to prevent information leakage from variable ordering.

We consider two sparsity levels based on edge probability:

e Sparse graphs (ER1): Edge probability peqqe = 1/(d—1)/2, yielding approximately d edges in expectation

e Dense graphs (ER3): Edge probability peqge = 3/(d—1)/2, yielding approximately 3d edges in expectation
In the main text results, we focus on sparse ER3 graphs with d = 20 variables and n = 100 samples.

H.2 Real-World Data

We use the discrete version of the Sachs protein signaling dataset from the BNLearn repository, which contains
measurements of 11 phosphoproteins and phospholipids in human immune system cells. The dataset details
include:

e Variables: 11 proteins/phospholipids: Raf, Mek, Plcg, PIP2, PIP3, Erk, Akt, PKA, PKC, P38, Juk.
e Ground Truth: Known causal DAG structure based on established biological pathways.
e Sample Sizes: We subsample the original dataset to create experiments with n = 100 samples.

e Preprocessing: Data is standardized to zero mean and unit variance.

The Sachs dataset provides a realistic benchmark for evaluating causal discovery methods on real biological
networks with known ground truth structure.

From Guess2Graph

H.3 Algorithm Input and Baseline Methods

Algorithm input and ordering choices. For all experiments reported in Section 6 and Appendix I (except
Appendix 1.6), algorithms receive only a predicted skeleton—an undirected graph over the variables—mnot a full
DAG. This skeleton guides the Edge Loop (EL) subroutine in determining which edges to test and in what order
(see Section 4). The ordering used to guide Edge Prune (EP)—the sequence of conditioning sets tested for each
individual edge—is always generated uniformly at random for all methods. This design choice reflects our focus
on accuracy improvements rather than runtime gains: by Lemma D.6, EP ordering does not affect edge decision
accuracy, only computational cost.

Baseline methods. PC and gPC serve as baseline versions of PC-Guess and gPC-Guess respectively. These
baselines always receive skeletons generated with expert edge prediction accuracy p,, = 0.5 (equivalent to random
guessing) and use random EP ordering (equivalent to pg.sep = 0.5). By comparing PC-Guess and gPC-Guess
against PC and gPC, we isolate the benefit of expert guidance over random ordering.

Number of trials. All results reported in Section 6 and Appendix I reflect averages over 30 independent trials,
each with a different random seed controlling data generation, expert prediction sampling, and algorithmic
randomness.

H.4 Simulated Expert Implementation

We implement simulated experts that generate skeleton predictions for evaluating algorithm performance across
controlled accuracy levels.

Skeleton generation for simulated experts. For experiments with simulated experts (Figures 2a, 2b, and

most experiments in Appendix I), we generate predicted skeletons as follows:

1. For each potential edge pair (z;,x;) where ¢ < j, we check whether the edge exists in the true skeleton &*

2. With probability p, (the expert edge prediction accuracy), we correctly classify the edge (add it to S if it
exists in §*, exclude it otherwise)

3. With probability 1 — p,, we misclassify the edge (add it to S if it does not exist in S *, exclude it otherwise)

This process simulates a binary symmetric channel and allows systematic evaluation across controlled accuracy
levels py € [0.3,1.0]. Each of the 30 trials in each experiment with simulated experts uses an independently
sampled skeleton prediction.

D-separation prediction (Appendix 1.6 only). The experiments in Appendix 1.6 differ from all other
experiments because they focus on evaluating how d-separation prediction accuracy pq.sep affects runtime (not
accuracy). For these experiments:

1. The skeleton S is generated using a simulated expert with accuracy py = 0.5 (random edge prediction),
ensuring the skeleton provides no informative signal about true edge structure

2. We use a simulated expert to predict d-separating sets: for each edge e; ; being tested, and for each candidate
conditioning set W, the expert correctly identifies whether W d-separates x;, z; in G* with probability pqa-sep

3. This d-separation prediction guides EP ordering according to Subroutine 4: predicted d-separating sets are
tested before predicted non-d-separating sets

4. We vary pa.sep € [0.5,1.0] to measure how d-separation accuracy affects expected runtime (Lemma D.9)

H.5 LLM Expert Implementation

We use Claude Opus 4.1 as our LLM expert, accessed through Amazon Bedrock. For experiments with the LLM
expert (Figure 2c), the skeleton generation process is:

e Prompting Strategy: For each of the 30 trials, we prompt Claude Opus 4.1 once using the following
prompt template, with variable names randomly shuffled for that trial (to prevent prompt bias):

From Guess2Graph

” Analyze this protein signaling network step by step: {var_names_str}

Step 1: Consider each protein’s known biological functions

Step 2: Identify which proteins can directly interact with each other

Step 3: Look for signaling pathways and cascades

Step 4: Include regulatory relationships (activation/inhibition)

For each pair of proteins, ask: Can protein A directly influence protein B’s activity or state?

List ALL direct causal relationships as pairs. Be comprehensive - missing edges is worse than
including uncertain ones. Return your answer as a list of variable name pairs that have direct
edges between them. Format your response as pairs of variable names in parentheses, separated by
commas. Start your final answer with the tag EDGES: followed by your list.”

This prompt uses step-by-step reasoning to systematically guide the LLM through the causal discovery
process. It employs chain-of-thought prompting by breaking down the analysis into discrete steps, and
uses recall-oriented instructions (”Be comprehensive”, "missing edges is worse”) to encourage high recall of
potential causal relationships.

e Response Parsing: We parse the LLM response (which returns edge pairs in the format "EDGES: (varl,
var2), (var3, vard), ...”) to extract the predicted skeleton S for that trial.

e Trial-specific pairing: For each trial, we sample n = 100 observations from the Sachs dataset and provide
both the data and the corresponding LLM-predicted skeleton to gPC-Guess. This approach generates 30
independent LLM predictions (one per trial), each paired with an independent data subsample.

The LLM expert leverages pre-trained biological knowledge to make predictions about protein signaling networks,
providing a realistic test of how modern Al systems can augment causal discovery.

H.6 Conditional Independence Testing

For synthetic data experiments with linear Gaussian models, all algorithms use Fisher’s Z-test (Fisher, 1921) for
conditional independence testing with significance level a = 0.05. The test statistic is:

1
ﬁ_m 3 log (+PXY|S)

XY|S

where pxy s is the sample partial correlation between variables X and Y given conditioning set S, and n is the
sample size. Under the null hypothesis of conditional independence, Z follows a standard normal distribution.
Fisher’s Z-test is appropriate for continuous data generated from linear Gaussian structural equation models.

For experiments with the Sachs dataset, we use the chi-square test (Pearson, 1900) of independence, which is
appropriate for discrete data. The test statistic is:

i,j

where O;; are observed frequencies and E;; are expected frequencies under the null hypothesis of independence
in the contingency table. This test evaluates conditional independence by comparing observed and expected
frequencies across all combinations of variable values and conditioning set states.

H.7 Packages and Dependencies

The experimental code uses the following Python packages:

e numpy (1.21.04): Array operations and linear algebra
e scipy (1.7.0+): Statistical functions and hypothesis testing
e causal-learn (0.1.3.84): PC and PC-Stable algorithm implementations

e networkx (2.6.0+): Graph operations and d-separation queries

From Guess2Graph

e boto3 (1.26.0+): Amazon Bedrock API access for LLM experiments

e matplotlib (3.5.04): Plotting and visualization

e tqdm (4.62.0+): Progress bars for long-running experiments

e json: Configuration and results serialization (Python standard library)

e itertools: Combinatorial operations for conditioning sets (Python standard library)
e concurrent.futures: Parallel experiment execution (Python standard library)

e datetime: Experiment timestamping and logging (Python standard library)

H.8 Compute Details

All experiments were conducted using Python 3.84, and run on a EC2 instance with AMD EPYC 7R13 proces-
sors, 192 vCPUs (96 cores with 2 threads per core), and 740 GiB of memory running Amazon Linux 2. Parallel
experiments used up to 8 concurrent workers via Python’s ProcessPoolExecutor to balance computational effi-
ciency with resource constraints.

From Guess2Graph

I Additional Experimental Results

I.1 Runtime Results for Figure 2a and 2b in Main Text

5 | —-- PC-Stable ~=- PC-Stable
PC

2
pC
gPC E ., gPC
@ PC-Guess i 21 @ PCc-Guess

., ® gPC-Guess § ® gPC-Guess
2

RUNTIME (Mean + SEM, Log: Scale)
RUNTIME (Mean + SEM, Log: Scale)

272 > S— ® ® ® ® ®

N
® He
[]

e & ® ® ®

05 0.6 0.7 08 09 10 05 06 07 08 09 1.0
Expert Edge Prediction Accuracy (p_psi) Expert Edge Prediction Accuracy (p_psi)

(a) Runtime (s) results for Figure 1.2 (ER1, d = 20,n = (b) Runtime (s) results for Figure 2a (ER3, d = 20,n =
100). 100).

Figure I.1: Results for runtime when varying py.
Runtime of gPC-Guess and PC-Guess both decline as expert prediction p, increases, although the reduction is
much larger in the dense rather than sparse setting, and in both settings the runtime reduction for gPC-Guess

is far larger than for PC-Guess.

1.2 Sparse Graphs

-~ PC-Stable
PC
084 gpC

@ PC-Guess
082 ® opPC-Guess i

+ SEM)
o o
2 B
——
——
-
Hee—
e
-

F1 (Mean

05 0.6 0.7 0.8 0.9 1.0
Expert Edge Prediction Accuracy (p_psi)

Figure I.2: Method performance as py, increases in sparse graphs (ER1, d = 10, n = 100).
PC-Guess continues to outperform baselines as py, grows, but with a smaller increase in F1 than observed in the

dense setting. Similar to the dense setting, gPC-Guess performance increases the most with p,, again surpassing
all other methods when p, = 0.7.

From Guess2Graph

1.3 Varying Sample Size

Methods
“ee PC-Guess
“et gPC-Guess
& —— PC-Stable

P_Edge Values.
® 05

m 075
A 10

50 200 800 3200
Sample Size

Figure 1.3: Method performance across different values of py, in sparse graphs (ER1, d = 10), as sample size is

rapidly increased.

As expected from the correctness result provided for PC-Guess and gPC-Guess (Theorem 5.2) that holds inde-
pendent of expert quality, all methods (no matter what the expert edge prediction accuracy py is) are converging
to perfect accuracy with increasing sample size.

1.4 Varying Dimensionality

Methods P_Edge Values

& <o+ PC-Guess ® o5
<o+ gPC-Guess m 075

H — PCStable A 10

Figure 1.4: Method performance across different values of py, in dense graphs (ER3, n = 100), as graph dimen-
sionality d is increased.

We note that gPC-Guess and PC-Guess continue to outperform the baseline PC-Stable as dimensionality is
increased, even with sample size fixed. The gap between gPC-Guess and the baseline PC-Stable widens as
dimensionality increases—for py, = 1.0, the gap between gPC-Guess and PC-Stable at d = 5 is only ~7 percentage
points, whereas at d = 30 the gap between them is ~18 percentage points. This suggests that the value of
expert guidance to performance increases in high-dimensional settings that are challenging for purely data-driven
methods.

From Guess2Graph

I.5 Results for Worst-Case Expert Performance

0875
0850
0.825
= 0.800
&
]
H

§0775

0.750
0.725

=== PC-Stable

pC
gpC
PC-Guess
gPC-Guess

e

F1 (Mean = SEM)
o
I
g

0.45

- PC-Stable
PC
oPC
PC-Guess
9PC-Guess

HeH

0.40
0.700 i

0.0 02 0.4 06 08 10 0.0 0.2 04 06 08 1.0
Expert Edge Prediction Accuracy (p_psi) Expert Edge Prediction Accuracy (p_psi)

(b) Method performance in dense graphs (ER3, d = 10,n =
100) with varying py.

(a) Method performance in sparse graphs (ER1, d = 10,n =
100) with varying py.

Figure 1.5: Results for varying p, in the worst case, i.e., the expert is worse than random (py < 0.5).

As expected from our theoretical monotonicity results (Lemma 4.1, Theorem 5.2, Theorem 5.3), we see that
both PC-Guess’s and gPC-Guess’s performances are worse than their counterparts PC and gPC when the expert
prediction is worse than random, i.e., py < 0.5. We note that PC-Guess’s performance is impacted less than
gPC-Guess’s performance, with a smaller reduction when the expert is poor, but gPC-Guess has a larger gain in
performance when the expert is good. However, due to our robust correctness guarantees (Theorem 5.2), in both
the dense and sparse setting the worst case performance (i.e., when the expert is entirely inaccurate, every single
edge prediction is wrong, py, = 0) the performance drop from baseline is only up to roughly 8 percentage points.
Unlike expert-aided soft/hard constraint methods, even when expert guidance is poor the drop in performance
is bounded because the expert never replaces tests, only guides sequences.

1.6 Varying D-Separation Prediction

@ PCGuess

@ PC-Guess
@ gPC-Guess % ® gPC-Guess i + +

N
e
e

RUNTIME (Mean = SEM, Log: Scale)
RUNTIME (Mean + SEM, Log: Scale)

¢

¢

§

i

$

0.0

(a) Method runtime in sparse graphs (ER1, d = 10, n =

100).

0.2

P_ACC_SUBSET_MD

0.8

1.0

0.0

0.2

P_ACC_SUBSET_MD

0.8

1.0

(b) Method runtime in dense graphs (ER3, d = 10, n =

100).

Figure I1.6: Method runtime as d-separating prediction accuracy pq.sep is varied.

We note that increasing p4-sep appears to decrease runtime of both PC-Guess and gPC-Guess in sparse settings as
expected by Lemma D.9, but the reduction in dense graphs is not observable for gPC-Guess, and only observable
for low pq.sep values for PC-Guess.

	Introduction
	Related Work
	Problem Setup and Guess2Graph
	Problem Statement and Design Criteria
	Guess2Graph Framework

	G2G in Constraint-Based Discovery
	A Tractable Metric for Analyzing Ordering Effects
	Guiding Edge Loop
	Guiding Edge Prune

	Expert Augmented Algorithms
	PC-Guess
	gPC-Guess
	Theoretical Guarantees

	Experiments
	Introduction
	Unbounded Error Example
	Sequential Testing in Causal Discovery
	Expert Error Violating Guarantees for Expert-Aided Discovery with Soft Constraints

	Definitions
	CD-GUESS Framework and Application to Constraint-Based Discovery
	Extensions of CD-GUESS Framework
	Heuristic Selection of Experts and Pruning of Guesses
	Integrating Uncertainty Quantification
	Leveraging Causal Reasoning

	Extension to Score-Based Methods
	Extension to ANM-Based Methods
	Decomposition of Constraint-Based Discovery into Edge Prune and Edge Loop
	Complexities of Error Propagation in Edge Loop

	Lemmas, Theorems, and Proofs
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof Lemma D.3
	Proof of Lemma D.4
	Proof of Lemma D.5
	Proof of Lemma 4.1
	Step 1: Describing the Process for Generating the Montone Coupling ("0362p2, "0362p1)
	Step 2: Showing the Marginals of the Two Variables Coincide with Original Distributions
	Step 3: Showing that the Coupling is Monotone.
	Step 4: Conclusion.

	Proof of Lemma D.6
	Proof of Lemma D.7
	Proof of Lemma D.8
	Proof of Lemma D.9
	Step 1: Describing the Process for Generating the Monotone Coupling (T"0362Tpd-sep1, T"0362Tpd-sep2)
	Step 2: Showing the Marginals of the Two Variables Coincide with Original Distributions
	Step 3: Showing that the Coupling is Monotone
	Step 4: Conclusion

	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3

	Theoretical Details Concerning EP-G and its Guarantees
	The Edge Prune Subroutine and Ordering Choices
	Accuracy is Invariant to Ordering
	When Orderings Affect Runtime
	Optimal Ordering Principles
	Expert-Guided Algorithm with Monotonicity Guarantees
	Discussion and Comparison to Edge Loop Guidance

	Extract Ordering Subroutine
	Suboptimality of PC-Guess under Perfect Guidance
	Experimental Details
	Synthetic Data Generation Parameters
	Real-World Data
	Algorithm Input and Baseline Methods
	Simulated Expert Implementation
	LLM Expert Implementation
	Conditional Independence Testing
	Packages and Dependencies
	Compute Details

	Additional Experimental Results
	Runtime Results for Figure 2a and 2b in Main Text
	Sparse Graphs
	Varying Sample Size
	Varying Dimensionality
	Results for Worst-Case Expert Performance
	Varying D-Separation Prediction

