Geography-Based Analysis of the Internet Infrastructure

Shiva Prasad Kasiviswanathan®
fIBM T.J. Watson Research Center
kasivisw @gmail.com

Abstract—In this paper, we study some geographic aspects of
the Internet. We base our analysis on a large set of geolocated
IP hop-level session data (including about 300,000 backbone
routers, 130 million end hosts, and one billion sessions) that
we synthesized from a variety of different input sources such
as US census data, computer usage statistics, Internet market
share data, IP geolocation data sets, CAIDA’s Skitter data set
for backbone connectivity, and BGP routing tables. We use
this model to perform a nationwide and statewide geographic
analysis of the Internet. Our main observations are: (1) There is
a dominant coast-to-coast pattern in the US Internet traffic. In
fact, in many instances even if the end-devices are not near either
coast, still the traffic between them takes a long detour through
the coasts. (2) More than half of the Internet paths are inflated
by 100% or more compared to their corresponding geometric
straight-line distance. This circuitousness makes the average ratio
between the routing distance and geometric distance big (around
10). (3) The weighted mean hop count is around 5, but the
hop counts are very loosely correlated with the distances. The
weighted mean AS count (number of ASes traversed) is around 3.

I. INTRODUCTION

Owing to its great importance, the Internet, has been a
subject of a large number of studies. Much of the previous
work has focused on studying topology of the Internet at the
network level, without any regard to geography. In this paper,
we perform a geography-based analysis of the Internet. Our
main focus is on understanding the geographic properties of
routing and the geographic structure of autonomous systems.
Our conclusions provide new insights into the structure and
functioning of the Internet.

Our results are obtained using a very high fidelity model
of the US Internet infrastructure that we create by combining
various datasets. Our background topology is derived primarily
from the CAIDA’s Skitter dataset. We use the telegeography
colocation database to obtain all the major point of presence
locations in the US. We then simulate millions of end-devices
and also billions of session-level traffic between these end-
devices. The end-devices and the session traffic are generated
in consultation with US census data, computer usage surveys,
and market shares of various Internet service providers. For
routing, we use an AS (autonomous system) path inference
algorithm that uses realistic BGP tables to derive inter-domain
paths. The level of authenticity captured by our model has
rarely been achieved before.

It is a well known fact that the Internet routes could be
highly circuitous [1], [2]. In this paper, we ask the question:
How geographic is the Internet routing? We compute the travel
distance between two end-points as the sum of the geometric
(geographic) distance between the end-points of the various
links on the path. For example, if the path from an end-
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device in Los Angeles to one in New York goes through San
Francisco and Miami, the travel distance for this path is the
sum of geometric distance from Los Angles to San Francisco,
from San Francisco to Miami, and from Miami to New York.
Our experiments show that a large fraction of the traffic travels
through the east and/or the west coasts of the US. Consider
two end-devices A and B and the traffic flowing from A to B.
Let s and ¢ be the locations of A and B, respectively. What
we observe is that for many such pairs A and B, the packets
from A travels (possibly multiple times) to the east and/or the
west coast before reaching B and this is true even if neither
A nor B are near either coasts. We observe this phenomenon
both at the national level (entire US traffic) and the state level
(traffic originating from some particular state).

Looking at the ratio between travel and geometric distance,
we observe more than 50% of the traffic has this ratio greater
than 2 (i.e., the travel distance is at least twice the geometric
distance) and about 20% of the traffic has this ratio greater than
4. One observes a similar behavior even if the traffic volume
(number of bytes flowing across) is taken into account. For
example, about 46% of the traffic volume our model generates
are between end-devices that are less than 1000 miles apart,
whereas, only 13% of the traffic volume have their travel
distance less than 1000 miles.

Another related question that we investigate is the spread
of the hop and AS counts and their relationship with distance.
Majority of the paths have hop count less than 6, and we found
that the average hop count is near 5. The AS count (the number
of ASes passed on the way) is almost always less than 3 and
for most of the traffic it is around 2. Also, a bit surprising is
the fact that the hop count is very loosely correlated with the
geometric distance. For example, it is almost equally likely
two end-devices that are 500 miles or 2000 miles apart will
have a hop count of 5. A similar lack of correlation also holds
between the hop count and travel distance.

II. RELATED WORK

Over the past decade, there have been numerous efforts on
analyzing the structural properties of the Internet topology.
Much of the work has focused on studying topology at the
network level. We refer the reader to a recent survey of
Willinger et al. [10] for more details on network topology
generation schemes.

Much of the work on Internet routing has mainly focused
on measuring properties like end-to-end performance, routing
convergence, etc., or on modifying certain aspects of routing
to get an improved performance. Our main focus is on under-
standing geographic properties of Internet routing. It is well



Model component [ Data sources

Backbone topology

Skitter dataset: http://www.caida.org/tools/measurement/skitter/
Alias clustering data from the iPlane project: http://iplane.cs.washington.edu/data/alias_lists.txt
IP geolocation dataset: http://www.ip2location.com/

Internet Point of Presence

Telegeography colocation database: http://www.telegeography.com/

Internet End Devices

US census data: census-block population in each 250x250m? grid in US for the 24-hour duration [3]
US business information (headquarter locations, number of employees, SIC codes): Dun & Bradstreet (D&B) dataset
Computer penetration ratio per business category: US census data [4]

Internet access routers

Dial-up service aggregators per each zip code: http://www.findanisp.com

Broadband ISP market share: http://www.leichtmanresearch.com/press/081108release.html

DSL central office locations: the LERG (Local Exchange Routing Guide) dataset from Telcordia
Cable company service locations: Dun & Bradstreet (D&B) dataset

Internet sessions Top 100 servers: http://www.alexa.com/

Internet traffic measurement results [5], [6], [7], [8]

Internet routing
AS prefix sets: http://www.fixedorbit.com/

BGP routing information from the University of Oregon Route Views Project: http://www.routeviews.org/

AS-level path inference: Qiu and Gao’s algorithm [9]

TABLE I: Data sources used in our Internet infrastructure model

known that the Internet route can be highly circuitous. This
was first suggested by Tangmunarunkit er al. [1], who used
a simplified routing model to show that the routing policies
significantly increases the shortest hop distance. The paper
by Tangmunarunkit et al. considered just the network path
taken by the routes and ignored the geographic information.
Subramanian et al. [2] were the first to study geographic
properties of Internet routing. They used the GeoTrack [11]
tool to determine the geographic path of the routes. They
suggested that the circuitousness of Internet paths depends
on the geographic and network locations of the end-host, and
tends to be greater when paths traverse multiple ISP. Their
dataset, however is quite small (it had only about 84, 000 end-
to-end paths). Spring et al. [12] documented some root causes
of this circuitousness. Lakhina et al. [13] studied a wide range
of geographic properties of the Internet, focusing on routers,
links, and autonomous systems. Yook et al. [14] studied the
fractal dimension of routers, ASes, and population density.
They argued that the fractal dimension of all these parameters
is around 3/2.

We undertake the first large-scale study of the redundancy
in Internet routing. A lot of models have been proposed
to characterize the routing and traffic in the Internet [15],
[16], [17], [18]. Instead of relying on inter-domain routing
models, we use an AS path inference algorithm to derive the
actual inter-domain paths used in the Internet. By combining a
number of real-life datasets we generate synthetic end-to-end
sessions for the entire US population. The traffic we generate
statically follows the traffic distribution observed in the US.

III. METHODOLOGY AND MODELING

In this section, we describe the various aspects of our
modeling setup. As mentioned earlier, we use many different
datasets such as the US census data, the US computer usage
statistics, and the Internet market shares of various service
providers to construct a large-scale realistic model of the US
Internet infrastructure. The Internet model that we use in this
paper was introduced by Yan et al. [19], and we refer the
reader to that paper for a complete description of the model.
In Table I we summarize the list of data sources we used to
generate our Internet model.

In total, we have generated 73,884,296 residential comput-
ers and 58,923,964 business computers in the entire US (except
Hawaii and Alaska). We also model Internet access routers
of three types, dial-up, DSL and Cable, based on the market
share of top US broadband companies and dial-up service
aggregators, and these access routers connect to the backbone
topology at Internet PoP (Point or Presence) locations based
on AS peering relationships. In addition, we have generated
a total of 1.14 billion sessions, which include HTTP, email,
P2P, and streaming traffic from every computer for a period
of 24 hours. With this comprehensive, high-fidelity, Internet
model, we shall investigate the geographic aspects of the US
Internet infrastructure in the following section.

IV. INTERNET ROUTING ANALYSIS

We analyze the paths generated by our experiments. For
a session between a source at location s and a destination
at location ¢, we use the Haversine formula to compute the
geometric distance between s and t. The Haversine formula
takes as input the latitude and longitude of the end-points. Let
(lats,long) and (laty,lon:) be the latitude and longitude of
the locations s and ¢. The Haversine distance d between s and
t equals, d = R X c. Here, R = 3961 miles is the radius of the
earth and ¢ = 2 xarctan2(y/a, v/1 — a) where a = sin?((lat,—
lats)/2) + cos(lat,) x cos(lat;) x sin?((lon; — lon)/2).

A. Nationwide Analysis

The route (travel) distance between s and t is computed by
summing up the lengths of the link on which the packets travel
from s to ¢ in our simulation. Figure 1 plots the geometric
distance against the route distance. Each point here is a session
in our simulation. Notice that since the route distance is always
greater than the geometric distance, there are no points above
the y = z line. In the following, we refer to geometric and
route distance of a session to mean the geometric and route
distance between the end points of the session.

In Figure 1, we notice that for many sessions the route
distance is far greater than their corresponding geometric
distance. In order to validate the feasibility of our synthesized
data, we geolocated a few trace route exercises. One such
example is shown in Figure 2. It is very easy to find such
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Fig. 1: Each point represents an Internet session. The X -axis represents the
route distance between the source and the destination of the session. The Y -
axis represents the geometric distance between the source and the destination
of the session. Only a uniform 1/10000th fraction of all sessions we generated
are shown in this plot. The plot on the right is same as that on the left except
that linesy = z,y = —x + 5100, and y = x — 5100 are drawn for visual aid.
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Fig. 2: A real traceroute path, generated from a computer in Santa Fe, New
Mexico to Palm Beach, Florida. Notice the long route traverses both coasts.

long paths (that go from cost to coast multiple times), in fact
it is more the rule than the exception and we encourage the
reader to try this little experiment at home. The fact that there
exists sessions whose route distance is significantly more than
their corresponding geometric distance may not be all that
surprising given that there are many economic and engineering
aspects that drive the Internet routing and this observation
has been made before (see, e.g., [1], [2]). But what is a bit
surprising is the number of such sessions (we elaborate this
point in Section IV-B).

Another surprising feature from Figure 1 is the heavy

concentration of points near the lines y = x, y = —x + 5100,
and y = x = —5100 (in form of a triangular strip). Note
that, 5100 = 2 x 2550 is approximately the round-trip

distance between the east coast and the west coast (2550 is
approximately the average distance between the east and the
west coast of the US). We now try to explain why there is this
concentration near these lines. We look at each of the these
three lines separately.

(1) Line y = z: The points close to the line y = x represent
the sessions where the source and destination are at distance
y apart, and the routes taken by the packets have lengths
almost y (i.e., sessions where geometric distance is very
close to the route distance ). These points represent the best-
case scenario as the routing is almost perfect.

(2) Line y = —z + 5100: The points close to the line y =
—x 4 5100 = x = 5100 — y represent the sessions where
the source and destination are at a geometric distance of vy,
whereas the route distance is 5100 —y = 2 x 2550 —y. Most
of the points that lie close to this line have the property that
if source is at location s and destination at location ¢ then
roughly either of the following happens: (a) if s is to the
west of ¢, then the route taken by packet in going from s
to t involves going s to the west coast, from the west coast
to the east coast, and from the east coast to t, or (b) if s

is to the east of ¢, then the route taken by packet in going

from s to ¢ involves going s to the east coast, from the east

coast to the west coast, and from the west coast to ¢t. To
quantify the above statement, we picked all the points that

lie close to this line (between the lines y = —x + 4900

and y = —x 4 5300) and analyzed the paths that produce

these points. We noticed that more than 90% of these points

satisfied either the property (a) or (b).

(3) Line y = = — 5100: The points close to the line y =
x — 5100 = =z = 5100 + y represent the sessions where
the source and destination are at a geometric distance of y,
whereas the route distance is 51004y = 2 x 2550+y. Most
of the points that lie close to this line have the property that
if source is at location s and destination at location ¢ then
roughly either of the following happens: (a) if s is to the
west of ¢, then the route taken by packet in going from s
to ¢ involves going s to the east coast, from the east coast
to the west coast, and from the west coast to ¢, or (b) if s
is to the east of ¢, then the route taken by packet in going
from s to ¢ involves going s to the west coast, from the
west coast to the east coast, and from the east coast to ¢.
Again to quantify this statement, we picked all the points
that lie close to this line (between the lines y = x — 4900
and y = x—5300) and analyzed the paths that produce these
points. We noticed that 98.5% of these points satisfied either
the property (a) or (b).

From the above discussion, we conclude that there is a very
interesting coast to coast shuttling of traffic even when the
source and destination are close to each other. In particular,
peering agreements among ASes are typically structured such
that geometric distance is not the main cost driver.

B. Distance Ratio Analysis

To better understand how far apart these distances could
be, we look at various “ratio plots”. In Figure 3(a), we study
the ratio of route distance to geometric distance. Let us define
stretch, or distance ratio as referred to in [2], of a path as the
ratio between length of the route and the geometric distance
between the end-points of the path. For about 45% of the paths
the stretch is between 1 and 2. An ideal stretch of exactly 1
was never achieved, but this is to be expected, since some
small amount of detour compared to geometric distance will
always exist. About 81% of the paths have stretch less than 4.
So still a significant fraction (about 19%) of the paths suffer
a large detour from the geometric path. The average stretch
(over all sessions) is 10.25.

In Figure 3 through heat maps we also show: (i) stretch vs.
geometric distance, and (ii) stretch vs. travel distance. In these
heat maps the number of sessions decrease gradually as we
go from a red to blue region. An observation is that generally
the short distance traffic (i.e., traffic going between source and
destination which are geometrically close) have large stretch.
For example, if restricted to traffic that goes less than 500
miles (in geometric distance) then the average stretch is as
big as 35. The simple reason for this is that if the geometric
distance is small, then even a small detour (relative to the
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Fig. 3: (a): Histogram of the ratio of distances (stretch) generated using a uniform random sample of about 8 million sessions (in log-log scale). (b): Heat map
representing stretch vs. geometric distance. The color scheme used in the heat map is shown adjacent to the plot. A reddish region has more number of points
(sessions) than a bluish region. (c): Heat map representing stretch vs. travel distance.

geometric distance) will result in large stretch. Most of the
long distance traffic (i.e., traffic going between source and
destination which are geometrically far) have small stretch.
For example, if considers traffic that goes more than 2000
miles (in geometric distance) then the average stretch is only
around 1.8. The reason for this being that since the geometric
distance is big, even a reasonably big detour (relative to the
geometric distance) will not lead to a big stretch.

C. Traffic Distribution Analysis

The previous plots were only considering distances, and
were completely ignoring the volume of traffic (measured in
number of bytes) that go across various source-destination
pairs. As one would expect there is a lot of asymmetry in
the volume of traffic among different source-destination pairs.
In Figure 4(a), we compare the volume of traffic against the
geometric distance. This plot just depends on our model of
traffic (session) generation and is independent of the routing
strategy used. About 22% of the traffic volume our model
generates goes less than 500 miles, about 46% of the traffic
volume goes less than 1000 miles, and about 76% of the
traffic volume goes less than 2000 miles. The farthest source-
destination pair in our model was around 2650 miles apart.
What is also interesting to observe is the multi-modality of this
plot that arises due to distances between various metropolitan
areas in the US. Due to large population density in the
metropolitan areas a large fraction of sessions we generate
are between these metropolitan areas.

In Figure 4(b), we plot the volume of traffic against the
route distance. Because of the routes being far from geometric,
only about 13% of the traffic volume has route distance less
than 1000 miles, about 26% of the traffic volume has route
distance less than 2000 miles, and about 76% of the traffic
volume has route distance less than 5000 miles. Comparing
this to the Figure 4(a), one notices that about 76% of the
traffic volume has geometric distance less than 2000 miles,
whereas, to get the same percentage in the route distance one
has to go 5000 miles. So again, one notices the discrepancy
between the properties of travel and geometric distances.

D. Hop Count and AS Count Analyses
We now analyze the hop and AS distribution of the routing
paths. The hop count between a source and destination is

defined as the number of hops that a packet takes in going
from the source to the destination. In Figure 4(c), we plot the
distribution of the hop count. We observe that a large fraction
of paths (about 38.3%) have a hop count of 6. Also, about
20.8% of the paths have a hop count of 5 and 25.4% of the
paths have a hop count of 6. The weighted mean hop count
is 5. The plot also suggests that the hop count distribution is
tightly concentrated around its mean.

In Figure 5(a), we plot the variation of the hop count
against the geometric distance. The plot suggests that the
geometric distance has very little effect on the hop count.
For example, if we look at the paths with hop count 6, we
see that there is a uniform spread of these paths independent
of the distance between source and destination. That is, there
are almost equal numbers of close and far source-destination
pairs with a hop count of 6. The same observation holds for
other hop counts too. So we conclude that the number of hops
is dependent more on the commercial relationships between
ASes, and less on the geometric distance. To make this
conclusion more formal, we measure the Pearson correlation
coefficient between hop count and geometric distance. The
correlation coefficient turned out to be quite small (about
0.15) suggesting that the hop count and geometric distance
are almost independent. A similar conclusion was obtained by
Huffaker er al. [20] by analyzing the CAIDA dataset for the
Asia-Pacific region.

In Figure 5(b), we plot the variation of the hop count
against the travel distance. As in Figure 5(a), we observe little
correlation between the hop count and the travel distance (the
correlation coefficient is only 0.136).

The AS count between a source (s) and a destination (t) is
defined as the number' of ASes crossed by a packet traveling
from s to ¢ (including, the source and destination ASes). If
the entire path remains within a single AS, then the AS count
is 1. In Figure 5(c), we plot the distribution of the AS count.
We observe that a large fraction of paths (about 75.8%) have
an AS count less than 2. About 96.2% of paths have an AS
count less than 3, which can be used to conclude that almost
all routing paths cross at most 3 ASes.

I'We count the number of crossings between ASes, so if a path enters the
same AS twice, we count it as two crossings.
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