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ABSTRACT

Although LLMs have demonstrated improved performance by scaling parallel test-
time compute, doing so relies on generating reasoning paths that are both diverse
and accurate. For challenging problems, the forking tokens that trigger diverse yet
correct reasoning modes are typically deep in the sampling tree. Consequently,
common strategies to encourage diversity, such as temperature scaling, encounter a
worsened trade-off between diversity and accuracy. Motivated by this challenge, we
treat parallel reasoning as a set-of-next-token-prediction problem, and incorporate
a set-based global loss into Supervised Fine-Tuning (SFT) using self-supervised
bipartite matching between our global forking tokens and unique reasoning traces.
We observe that, while naive fine-tuning with multiple reasoning traces collapses
these unique reasoning modes, our proposed method, Set Supervised Fine-Tuning
(SSFT), preserves these modes and produces emergent global forking tokens.
Experiments on multiple reasoning benchmarks show that our SSFT consistently
outperforms SFT under both Pass@1 and Cons@k metrics.
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Figure 1: An illustration of different supervised fine-tuning methods that aim to instill parallel
reasoning capabilities from diverse reasoning traces for the same question. Compared to (1) standard
SFT and (2) SFT with randomly assigned parallel thinking identifiers, (3) Set-Supervised Fine-
Tuning leverages a self-supervised bipartite matching process to learn to maximally differentiate the
reasoning modes conditioned on distinct <thinki>, for each question. Self-supervised matching
prevents collapse of maximally distinct reasoning modes caused by ordering bias from randomly
or manually assigning a reasoning mode identifier to a reasoning trace. The learned global forking
tokens are considered emergent because we observe that similar reasoning modes over the traces
for different questions cluster to match the same <think,i> at convergence, even though we do
not manually identify such modes or incorporate any regularization term to maintain consistency in
matching over different input prompts.

1 INTRODUCTION

Large language models have recently improved reasoning by allocating more test-time compute
to generate more tokens before producing the final answer (OpenAI, 2025). However, extended
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sequential scaling can lead to “overthinking”, where performance decreases beyond a certain sequence
length (Ghosal et al., 2025; Chen et al., 2024a). To mitigate this, another scaling dimension based on
repeated parallel sampling and aggregation (Wang et al., 2022; Brown et al., 2024) has shown success
in further boosting reasoning performance. However, these methods rely on LLMs generating diverse
yet correct solutions; as tasks become harder, a new mechanism is required to increase diversity.
Recent work shows that only a minority of tokens in Chain-of-Thought reasoning (Wei et al., 2022)
can act as forking tokens that lead to distinct reasoning modes (Wang et al., 2025b;a), so as the
problem becomes harder and the generation becomes longer, it can become substantially harder to
sample them. Also, common practices to encourage diversity, typically through temperature scaling,
inherently entail a diversity-accuracy trade-off, as the forking tokens that trigger diverse yet correct
reasoning modes are typically located deeply within the sampling tree. Moreover, recent theoretical
work also shows that increasing the temperature alone does not necessarily guarantee greater diversity
unless the model is explicitly trained for coverage. (Verine et al., 2025).

Building on these observations, we aim to leverage diverse reasoning traces to train for coverage
(Guo et al., 2025; Google, 2025b). We introduce global forking tokens to initiate parallel reasoning
traces and frame parallel reasoning as a set prediction problem. Specifically, given a question, an
LLM, conditioned on a reserved set of tokens in a chosen ordering, generates M reasoning sequences
in parallel, each aligned with one of M ground-truth reasoning traces. For each ordering, we compute
the total autoregressive loss across the generated sequences. By enumerating all possible orderings,
we identify the minimum loss, which defines the set language modeling loss, conditioned on the
distinct forking tokens (Equation 5). This formulation naturally incorporates coverage into the
training objective and is capable of learning global forking tokens that can serve as prompts to trigger
reasoning modes that are both diverse and accurate. We operationalize this idea through our Set
Supervised Fine-Tuning (SSFT) framework. Our main contributions are summarized below.

• We introduce global forking tokens and incorporate a set-based loss into SFT using bipartite
matching between a set of reserved global forking tokens and diverse reasoning traces
(Section 2; Figure 2). The goal is that, after training with SSFT, the model can initiate
distinct reasoning modes when prompted with different tokens from this set, thus reducing
the dependence on sampling forking tokens mid-generation (Section 2.3; Figure 3).

• We empirically demonstrate that, across multiple reasoning benchmarks, a model fine-tuned
with SSFT outperforms a standard SFT model trained on the same distilled traces from
diverse teacher models, improving Pass@1, Pass@k, and Cons@k (Section 3, Table 1 and
Figure 4). We also find that naively fine-tuning using diverse reasoning traces without
the set loss from bipartite matching can result in such control tokens initiating the same
collapsed reasoning mode (Figure 6). In contrast, the global forking tokens learned by SSFT
maximally differentiate reasoning modes (Figure 5).

• To facilitate training where different input prompts can use different numbers of parallel
reasoning traces, which can cause difficulty in using gradient accumulation under distributed
training, we also include a simple implementation based on the HuggingFace repository.
Our implementation does not concatenate a variable number of reasoning traces along the
sequence dimension and modify causal attention, which would require sequence parallelism
and more complicated fused kernels to avoid out-of-memory for training with long reasoning
traces (Appendix A.1).

2 LEARNING GLOBAL FORKING TOKENS VIA SET SUPERVISED FINETUNING

Background on Language Modeling with Reasoning. In language modeling, the goal is to train a
model πθ to approximate the joint distribution over a sequence of word tokens x = {xi}Ti=1 ∈ VT,
where T is the sequence length, and each token is within a finite vocabulary set V . An autoregressive
model uses the chain rule to represent it as a product of conditionals on the preceding tokens:

πθ(x) =

T∏
t=1

πθ (xt|x<t) (1)

This is known as next-token-prediction (NTP) (Radford et al., 2019). For reasoning tasks, we break
the sequence of word tokens into: (1) an input prompt x = {xt}Tx

t=1, (2) a special token (or a sequence
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of tokens) g that initiates reasoning, and (3) a reasoning trace plus the final answer r = {rt}Tr
t=1.

To simplify notation, we combine a verifiable answer and a reasoning trace. A reasoning model
autoregressively generates a reasoning path and the final answer: πθ(r|x, g) =

∏Tr

t=1 πθ (rt|x, g, r<t).
To train a reasoning model, Supervised Fine-tuning (SFT) minimizes the negative log-likelihood of a
ground-truth reasoning trace, i.e.,

L(θ) = −Ex,r

[
Tr∑
t=1

log πθ(rt|x, g, r<t)

]
(2)

2.1 PARALLEL REASONING AS SET OF NEXT TOKEN PREDICTION

Problem Setup. In this paper, our goal is not only to instill new reasoning capabilities into a model,
but also to ensure that prompting with a set of reserved special tokens, in parallel with a question,
elicits distinct reasoning traces. We call these global forking tokens g := {g(i)}Ni=1 instantiated
as {<thinki> }Ni=1 tags. We use g(i) interchangeably with <thinki>, depending on context
for clarity. We consider a setting with multiple sources of reasoning traces, obtained at low cost
without human annotation by distilling from diverse teachers, sampling repeatedly, and potentially
using rejection sampling to filter out low-quality or incorrect traces. We adopt this low-cost regime
to highlight the effectiveness of our algorithm, though the method extends naturally to settings
with well-annotated, human-labeled data. So our problem is to (1) learn to do a set of next-token
predictions on multiple distinct yet correct reasoning traces R := {r(j)}Mj=1 in parallel for an input
prompt x, and (2) ensure that distinct global forking tokens can uniquely initiate these distinct traces.

To do this, we make a simple change to the NTP loss, which now has two requirements: (1)
Permutation-invariance: It should not depend on the order of elements in R and g, so we don’t
penalize a trace that incurs high NTP loss under one global forking token if the model predicts it well
when conditioned on another. (2) No shared global forking token: We want {g(i)}Ni=1 to uniquely
initiate distinct reasoning traces, so this requirement prevents conditioning on the same g(i) when
generating distinct traces given a question.

To satisfy these requirements, we formally incorporate a subproblem in language modeling: finding
the minimum cost bipartite matching configuration between the left vertices {g(i)}Ni=1 and the
right vertices {r(j)}Mj=1 where the cost of each edge between a left vertex i and a right vertex j,
is the NTP loss of r(j) conditioned on g(i) and an input prompt x. A matching configuration is
a set of edges connecting the left and right vertices where no two edges share a common vertex.
Without loss of generality, we assume N ≥ M to simplify our notation. The total cost involves all
vertices on the smaller side of the bipartite graph, so this allows us to write the summation from
1 to min{N,M}, which equals M under this assumption. We denote a matching configuration as
a finite map σ : {1, ...,M} → {1, ...,N} such that σ(j) = i ⇐⇒ r(j) is paired with g(i). Let
SP := {σk}Pk=1 denote all the

(
N
M

)
× M! configurations of a bipartite graph. The total cost of

each configuration represents the compatibility between {r(j)}Mj=1 and {g(i)}Ni=1 under this unique
matching. Figure 2 shows an example of a matching configuration.

2.2 SSFT: MINIMIZING SET OF NTP LOSSES UNDER OPTIMAL BIPARTITE MATCHING

Under this formulation, we propose Set Supervised Fine-Tuning (SSFT), which performs two
operations at each training step: (1) find the minimum-cost bipartite matching that is optimal for
uniquely initiating different reasoning traces (2) and then minimize the NTP losses under the matching
configuration to instill diverse reasoning modes conditioned on the matched global forking tokens.
We show our implementation in Algorithm 1.
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Figure 2: An illustration of one SSFT training step. Step 1: We first construct the cost ma-
trix by evaluating all pairwise combinations: for each r(j) ∈ {r(1), r(2), r(3), r(4)} and each
g(i) ∈ {g(1), g(2), g(3), g(4), g(5), g(6)}, we compute the NTP loss of r(j) conditioned on g(i)

(Equation (4)). Then we use Hungarian algorithm to find σ̂ that minimizes the total bipartite
matching cost. Here, this minimum is the sum of the losses highlighted in blue, which means
σ̂ = {(g(6), r(1)), (g(5), r(2)), (g(2), r(3)), (g(3), r(4))}. Step 2: We optimize θ by backpropagating
the set of NTP losses for r(j), each conditioned on g(σ̂(j)). This is the Hungarian loss in Equation 5.

For the first step, we compute all the entries in the cost matrix such as the one in Figure 2 and then
apply the Hungarian algorithm (Kuhn, 1955) to efficiently find the optimal σ̂:

σ̂ = argmin
σ∈SP

M∑
j=1

Lmatching

(
g(σ(j)), r(j)

)
, where (3)

Lmatching

(
g(i), r(j)

)
= −sg

(
1

Tr

Tr∑
t=1

log πθ

(
r(j)t |x, g(i), r(j)<t

))
(4)

As noted in Equation 4, each matching cost in Equation 3 is the negative log-likelihood of r(j)

conditioned on g(σ(j)) under the current model parameters. Here, sg(·) is stop-gradient, as the
matching process is done by discrete optimization w.r.t. σ, so we can save VRAM by not storing
intermediate activations. We explicitly indicate that length normalization is done to remove biases
toward trace length, so that the matching is driven by semantic content.

After solving σ̂ for each (x,R), our second step optimizes model parameters θ by backpropagating
the Hungarian loss in Equation 5. In Algorithm 1, the expectation is replaced by its sample mean
over pairs of (x, {r(j)}Mj=1) in a mini-batch. In practice, we may use only the first L < Tr tokens in
Equation 4 to compute the matching cost and find σ̂ when the training dataset is such that these early
tokens reveal sufficient differences. However, we always optimize the Hungarian loss for the full Tr

length.

LHungarian(θ) = − E
x,R∼D

 M∑
j=1

Tr∑
t=1

log πθ

(
r(j)t |x, g(σ̂(j)), r

(j)
<t

) (5)

Remarks. The resulting model is not the same as a simple routing of the models independently
trained with the nonoverlapping subsets of these traces. Firstly, SSFT allows positive transfer
in representation learning within {r(j)}Mj=1 even though they are matched to different {g(i)}Ni=1.
Secondly, it is not optimal to distill reasoning traces from the same fixed sources for every question
if the goal is to maximize both diversity and correctness. Some traces can be filtered by rejection
sampling. Our algorithm supports a variable number of target reasoning traces across training steps,
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with sources that may also change for each x. Thirdly, even if the two sets of traces, {r(j)a }Mj=1 for

xa and {r(j)b }Mj=1 for xb, are from the same sources, their optimal configurations σ̂a and σ̂b can still
vary because a teacher model can reason differently under different questions. Lastly, we reserve
more global forking tokens than the maximum number of traces (N > M), and empirically observe
that all the forking tokens are being matched throughout the process. This is because the extra forking
tokens can maximally intra-differentiate similar traces.

2.3 INFERENCE WITH LEARNED GLOBAL FORKING TOKENS

We discuss the inference protocols with N global forking tokens.

How to visualize learned matchings Inference protocols
Pass@1: 

Cons@k: 

<think 1>
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<think 3>

<think 5>

<think 4>

<think 6>
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AnsQuestion
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<think 1>Question Ans
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<think 5>

<think 4>

<think 6> Aggregate
converged
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<think 1>

<think 2>

<think 3>
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<think 4>
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Figure 3: (Left) Sp is the subset of bipartite matching configurations that are still computed optimal
towards the end of training. These can be individually visualized as a bipartite (Middle) Learned
matchings by SSFT-32B in Exp 3, obtained by aggregating all edges in Sp. (Right) At test time,
for Pass@1, we prompt with g(i⋆) that has the most connected edges. For Cons@k, we prompt i-th
parallel generation with <think(i % N)>.

Inference Process (Cons@k). Our inference protocol with parallel test-time compute is to prompt
ith response with <think(i%N)> and then do majority voting on their answers. KV prefix caching
accelerates the generations.

Inference Process (Pass@1). When aggregation is not allowed, we use g(i) that reasons with more
flexibility. Inspired by enumerating dissimilar bipartite matchings to reveal node-level variation (Blu-
menthal et al., 2022), we choose the learned g(i) with largest coverage. Note that this token emerges
automatically thanks to SSFT, and the other emerging {g(i)}Ni=1 still contribute to representation
learning and improving Cons@k with distinct reasoning modes. Concretely, each time an optimal
matching σ̂ ∈ {σk}Pk=1 is computed, we increment a count c(σk); empirically, only a finite subset
Sp := {σk}pk=1 ⊆SP continues to accumulate mass late in training, indicating the stable learned
matchings. We then take the union of their edges, and select g(i

⋆) that matched to the largest number
of distinct traces based on Equation 6 for Pass@1. Figure 3 shows an example of the matchings
learned by aggregating all edges in Sp. More details about Sp

1 are in Appendix A.2.

i⋆ = argmax
i
|
⋃

σ∈Sp

{j|σ(j) = i}| (6)

3 EXPERIMENTS

We address the following research questions through experiments: (RQ1): In terms of Pass@1 and
Cons@k accuracy, how does a model trained with SSFT perform on reasoning benchmarks? (RQ2):
Does finding the optimal bipartite matching matter in reasoning performance? (RQ3): Does training
with diverse reasoning traces yield better accuracy and coverage under SSFT compared to standard
SFT with temperature scaling? (RQ4): Does prompting with distinct {g(i)}Ni=1 genuinely make a
model generate diverse reasoning traces? (RQ5): Is the performance gain from SSFT conditioned on
the traces generated by our procedure and on a high-quality small dataset?

1We choose the subscripts p and P to emphasize that Sp is a subset of SP.
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3.1 EXPERIMENT SETUP

Training Dataset. We use the 1,000 questions from s1k dataset Muennighoff et al. (2025). In addition
to the R1 (Guo et al., 2025) and Gemini Flash (Google, 2024) traces provided by s1, we also use
Claude Opus 4.0/4.1 (Anthropic, 2025) and GPT-OSS-120B (Agarwal et al., 2025) with high and
medium reasoning effort to obtain a pool of distilled targets for the 1,000 questions. For each question,
we generate two traces per source to populate the pool. We then sample four traces from this pool.
We call this s1k-4mixed-reasoning dataset.

Training Details. We fine-tune Qwen2.5-32B-Instruct (Yang et al., 2025a) for six epochs with a
context length of 32,768. We reserve N = 6 global forking tokens and use M = 4 targets per
question. To find the optimal bipartite matching for each input prompt, we consider only the first
1,000 tokens when computing the matching cost in Equation 4 for computational efficiency. We call
this model SSFT-32B. We also include SSFT but choose a random bipartite matching at each step to
fine-tune SSFT-32B (random σ). Exact details on the pool of diverse distillation targets and selection
procedure, as well as training hyperparameters, are provided in Appendix A.3.

Baselines. All of our baselines use Qwen2.5-32B-Instruct as their base model, and only train on the
1k questions. Our baselines include two groups: (Single-Target△) models trained with one trace per
question and (Multi-Target ⋆) models trained with four traces per question. For (Single-Target), we
include s1.1-32B (Muennighoff et al., 2025), which uses 1k DeepSeek-R1 traces. We also fine-tuned
an SFT-OSS-distill-32B baseline that trains only on the 1k GPT-OSS traces with high reasoning
effort, as these traces achieved the highest correctness on the 1k questions based on an evaluation
by Claude 3.5 Sonnet comparing each attempt against the reference answer. For (Multi-Target),
we use our s1k-4mixed-reasoning to fine-tune SFT-mixed-distill-32B using standard SFT with one
<think> token, duplicating each question and treating the four traces as four individual data points.
We also include Multiverse-32B (Yang et al., 2025b), which prompts Gemini 2.5-Pro (Google, 2025a)
to transform 1k sequential CoTs into parallel CoTs as their training data.

Evaluation Setup. Our evaluation tasks consist of AIME24/AIME25 (Ye et al., 2025), MATH-
500 (Hendrycks et al., 2021), and GPQA-Diamond (Rein et al., 2024). We use LightEval (Habib
et al., 2023) as our evaluation framework with generation configurations: temperature=0.7 used
in (Guha et al., 2025), top_p=0.95, max length=32768. For Pass@1 accuracy without any parallel
test-time compute, we select learned g(1) for SSFT-32B and g(4) for SSFT-32B (random σ) based on
Equation 6. For each Pass@1 accuracy, we compute the average performance over 32 generations.
For Cons@6, which applies each of the six global forking tokens once in our method and uses six
generations for the baselines, we compute the average over 11 sets of generations to reduce variance
in the results. We refer to this as Average of Native Cons@6, which corresponds to the Pass@1 metric
with parallel generations in concurrent work (Wen et al., 2025). Appendix A.4 presents an example
of the parallel generations by SSFT-32B.

3.2 EVALUATING SSFT ON REASONING BENCHMARKS

For RQ1, we see in Table 1 that SSFT delivers the best Pass@1 accuracy, 64.06 on AIME24 and
58.13 on AIME25, outperforming SFT-mixed-32B by 8.33% and 6.57%, respectively. We also
observe consistent improvements on all four tasks under parallel test-time compute at two scales,
Cons@6 and Cons@32, over SFT-mixed-32B, which was trained on the same reasoning traces.
Some notable results are Cons@6 = 73.94%,Cons@32 = 86.67% on AIME25. To answer RQ2,
we observe consistent improvements over SSFT-32B (random σ), with especially strong gains at
Cons@6 on AIME25, where effectiveness with few parallel generations is critical. As shown later in
Figures 5 and 6, optimal bipartite matching is essential for preventing collapsing reasoning modes.

For RQ3, we compare our method against SFT-mixed-32B under various k in Pass@k accuracy with
32 generations to assess generation coverage. Figure 4 shows that SSFT achieves higher coverage
across nearly all values of k. SFT-mixed-32B requires more allowed attempts and higher temperature
to match the coverage of SSFT at the cost of lowering its Pass@1 and Cons@6 accuracy.
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AIME 2024 AIME 2025 MATH-500 GPQA-D Average

Pass@1: Average performance of individual generations

Qwen2.5-32B-Instruct △ 15.80 10.40 80.40 47.00 38.40
s1.1-32B △ 54.79 44.27 92.16 62.12 63.34
Multiverse-32B ⋆ 53.80 45.80 91.80 60.70 63.03
SFT-OSS-distill-32B△ 57.82 48.75 89.54 60.06 64.04
SFT-mixed-distill-32B⋆ 55.73 51.56 88.36 57.50 63.29
SSFT-32B (random σ) ⋆ 61.77 55.10 89.95 62.28 67.28
SSFT-32B ⋆ 64.06 58.13 90.02 60.39 68.15

Average of Native Cons@6: Average performance of majority voting with 6 parallel generations

s1.1-32B △ 70.30 53.33 95.60 61.45 70.17
SFT-OSS-distill-32B△ 72.12 65.45 95.47 61.52 73.64
SFT-mixed-distill-32B⋆ 72.42 70.91 92.10 57.32 73.19
SSFT-32B (random σ) ⋆ 73.03 67.58 95.67 61.87 74.54
SSFT-32B ⋆ 75.45 73.94 96.47 63.05 77.23

Cons@32: Majority voting performance with large number of parallel generations

s1.1-32B △ 73.33 63.33 94.80 60.61 73.02
SFT-OSS-distill-32B△ 76.66 73.33 96.00 61.60 76.90
SFT-mixed-distill-32B⋆ 80.00 73.33 96.20 60.61 77.54
SSFT-32B (random σ) ⋆ 80.00 80.00 95.60 62.63 79.56
SSFT-32B ⋆ 83.33 86.67 96.80 61.62 82.11

△ indicates training with single-target data and ⋆ indicates training with multi-target data.

Table 1: Performance of SSFT compared to baselines on four reasoning tasks, reported at Pass@1,
Cons@6, and Cons@32. SSFT selects <think1> for Pass@1 and replaces 6 generations with 6
generations prompted by distinct <thinki> for Cons@k. We observe consistent improvements
over (i) SFT-OSS-distill-32B, which uses the 1k OSS-high traces; (ii) SFT-mixed-distill-32B, which
uses the four mixed traces but treats them as individual data; and (iii) SSFT-32B (random σ), which
trains using Equation 5 but with a randomly chosen σ.
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Figure 4: Coverage of SSFT compared to SFT-mixed-distill-32B with temperature scaling, reported
at Pass@k. For convenience, we also report the Cons@6 accuracy next to each line. In AIME25,
SFT-mixed-distill-32B needs to raise the inference temperature to 1 and use more attempts to match
the coverage at the cost of lowering its Pass@1 and Cons@6 accuracy, further widening the gaps.

3.3 EVALUATING PARALLEL REASONING DIVERSITY AND LEARNED MATCHINGS

Addressing RQ4, we show that our global forking tokens genuinely initiate distinct reasoning traces
and offer a new mechanism for leveraging test-time compute. We call these tokens emergent because
we do not manually identify distinct reasoning modes over the traces for different questions. For
example, <think1> could lead to longer reasoning than <think5> for one question, but this may
not be consistent for other similar questions. We do not add any auxiliary objective to skew the
original language modeling objective.
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Figure 5: (SSFT, optimal matching). Distribution of thinking-token counts and average performance
on AIME24 (left) and AIME25 (right) prompted by a distinct <think1>, . . . ,<think6>. Each
accuracy is averaged over 11 generations, shown above each whisker. We observe clear specialization
of reasoning modes. <think1>, . . . ,<think4> trigger longer traces, better suited to many AIME
problems, and these surpass all the average accuracy under SFT without bipartite matching in Figure 6.
<think5> and <think6> favor concise reasoning, which can be suboptimal for some AIME tasks,
yet still raise Cons@6 beyond all baselines by adding diversity. The consistency of these length
distributions across AIME24 and AIME25 indicates the difference is not due to randomness, and that
these think tags truly initiate distinct yet consistent reasoning modes.
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AIME25 Cons@6=67.58%: Avg stats (SSFT-random)

Figure 6: (SSFT, random matching). Distribution of thinking-token counts and average performance
on AIME24 (left) and AIME25 (right) prompted by a distinct <think1>, . . . ,<think6>. Each
accuracy is averaged over 11 generations, shown above each whisker. Without optimal bipartite
matching during SFT, the think tags initiate reasoning traces with similar length distributions and
achieve similar average performance. Moreover, the slight length differences are not consistent
across AIME24 and AIME25, suggesting randomness rather than genuine specialization; the tags
therefore collapse to similar modes, failing to preserve the diverse reasoning modes in the training
data. Both the average performance and Cons@6 fall behind those from any think tag that initiates
long reasoning under SSFT in Figure 5.

Emerging Diverse Reasoning Modes. Using the Cons@6 results in Table 1, we form six sets of
generations, each prompted by a distinct g(i). For each set, we show the average accuracy and the
distribution of thinking-token counts: Figure 5 for SSFT with optimal bipartite matching and Figure
6 for SSFT with random matching. Reasoning length: Length partially indicates the diversity in
reasoning, and we see clear differences for SSFT with optimal matching, despite the absence of
hand-crafted matching rule or information about these traces. The consistency of these distributions
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(c) SSFT under optimal matching
({g(i)}6i=1, {r(j)}4j=1). Sp =
{62, 110, 134, 180, 204, 230}

Figure 7: Cumulative counts of σk ∈ SP computed as optimal over training. Note that SP and
Sp are defined in Sections 2.1 and 2.3, respectively. Front axis: matching configuration index k.
Depth: training step t. Bar height is the cumulative counts. These are the evolution of matchings
during training 3 Qwen-32B-Instruct models under 3 bipartite matching settings. In this case study,
the {r(j)}4j=1 are always (GPT-OSS-high, GPT-OSS-med, R1, Gemini) for each question. Note that
Random matching method does not minimize Eqn 5 under optimal matching, but we track it. We
observe Sp = SP with random matching, meaning no correlations learned. But by optimizing
Hungarian loss, we see the emergence of Sp ⊂SP.
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(a) Visualization of learned
matchings after SSFT with random

matching. The fully connected
graph indicates no correlations

were learned.
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(b) Visualization of learned
matchings after SSFT with optimal
matching between {g(i)}4i=1 and

{r(j)}4j=1
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<think 6>
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DeepSeek
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(c) Visualization of learned
matchings after SSFT with optimal
matching between {g(i)}6i=1 and

{r(j)}4j=1

Figure 8: We visualize the learned matchings by connecting edges in the subset of configurations
Sp that still accumulate mass late in training (Figure 7). All the three models in (a), (b), and (c) are
fine-tuned using GPT-OSS-high, GPT-OSS-medium, R1, and Gemini to distill reasoning traces for
every question, enabling clearer interpretation.

across AIME24 and AIME25 indicates the differences is not from randomness, whereas randomly
assigning a <thinki>, as in concurrent work (Wen et al., 2025), does not yield clear or consistent
differences in reasoning length, as shown in Figure 6. Performance: After finetuning with random
matching, prompting with a distinct <thinki> shows no meaningful impact (≈ 61% on AIME24
and ≈ 55% on AIME25). With optimal matching, SSFT elicits distinct reasoning modes initiated
by <think1>, . . . ,<think4> that reach around 65% on AIME24 and ≥ 59% on AIME25, with
different lengths. Although <think5> and <think6> are weaker due to shorter reasoning modes,
the average of these and, especially, Cons@6 performance improve consistently with them.

Visualization of Learned Matchings. We observe in Figure 3 that some g(i) ∈ g from SSFT-
32B have unique configuration of matched edges with {r(j)}4j=1. This is a positive indication that
{g(i)}6i=1 are likely to initiate distinct reasoning modes. We hypothesize that {g(i)}Ni=1 can still yield
a unique edge-matching configuration even if a subset of {r(j)}4j=1 are difficult to distinguish.

For interpretability, we fine-tune using the same four teacher models for each x: GPT-OSS high,
medium, R1, and Gemini. We call this dataset s1k-4teachers-reasoning dataset, and ask whether
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SSFT associates a unique g(i) to the Gemini and R1 traces which have easily identifiable reasoning
patterns, and then have the rest matched to OSS-high/OSS-medium traces in different ways (i.e. only
matched to OSS-high, only matched to OSS-med, and matched to both). We track source indices
only for evaluation; the model still receives an unordered set of traces with no source information for
each question. We study three bipartite matching settings with SSFT. Figure 7 shows the evolution of
matchings learned under these three hyperparameters: (a) random matching with four reserved g(i),
(b) optimal matching with four reserved g(i), and (c) optimal matching with six reserved g(i). Initially,
all the configurations σ ∈SP accumulate mass as there is no correlations between g sand {r(j)}Mj=1.
Figure 7a shows SSFT under random matching does not shrink the size of configurations computed
as optimal, meaning that no correlations are learned between {g(i)}4i=1 and {r(j)}4j=1. By contrast,
Figure 7b and Figure 7c show the emergence of only a strict subset of matching configurations in SP.
This indicates some correlations between {g(i)}Ni=1 and {r(j)}Mj=1 are indeed learned through SSFT.
We first visualize the learned matchings of the model with four g(i) in Figure 8b. We observe that g(1)

and g(2) are uniquely matched to the R1 and Gemini traces, showing that SSFT can indeed uniquely
associate g(i) to sufficiently diverse reasoning traces. Now to confirm our previous hypothesis, we
see the unique learned matchings (g(3), (OSS-high, OSS-med)), (g(4),OSS-med). Furthermore, by
connecting all the edges in Sp from SSFT with 6 forking tokens (Figure 7c), we also see unique
learned matchings (g(3),OSS-high), (g(4),OSS-med), (g(5), (OSS-med,OSS-high)) in Figure 8c.
This confirms that the global forking tokens can identify unique correlations even among highly
similar traces.

3.4 ABLATION STUDY: REMOVING HIGH QUALITY SMALL DATASET

To test whether our empirical gains are conditioned on the traces generated by our procedure and
on a highly optimized small dataset (Muennighoff et al., 2025), we fine-tune on a public dataset
that already provides sufficient reasoning traces per question: the 93k math set of Face (2025) (2-4
traces per question). Because this dataset has been successful for fine-tuning Qwen2.5-Math-7B, we
adopt that base model and compare SSFT against SFT trained on all available traces. Details on the
hyperparameters are in Appendix A.3.4. Addressing RQ5, Table 2 shows consistent improvements in
both Pass@1 and Cons@32. The results indicate the SSFT is effective for larger sized public dataset
with less diverse reasoning traces.

AIME 2024 AIME 2025 MATH-500 GPQA-D

Model Pass@1 Cons@32 Pass@1 Cons@32 Pass@1 Cons@32 Pass@1 Cons@32

Qwen2.5-Math-7B-Instruct 10.42 20.00 9.48 23.33 81.87 87.40 30.29 30.30
SFT-OpenR1-93k-7B 46.15 66.67 34.17 50.00 86.62 90.20 46.35 47.98
SSFT-OpenR1-93k-7B 51.25 73.33 35.52 56.66 89.74 93.60 46.86 48.90

Table 2: Performance of SSFT versus SFT trained solely on publicly available distillation targets.
The setup uses the 93k math questions from Face (2025) with Qwen2.5-Math-7B as the base model.
SFT-OpenR1-93k-7B uses the same distillation targets as SFT-mixed-distill-32B in Table 1.

4 RELATED WORK

Test-time Scaling. There has been a surge of work fine-tuning LLMs to reason longer, using
reinforcement learning for frontier models (OpenAI, 2024; Shao et al., 2024; xAI, 2025; Yang
et al., 2025a) and supervised fine-tuning for smaller ones (Muennighoff et al., 2025; Hu et al.,
2025). These methods enable LLMs to improve reasoning by allocating more test-time compute to
sequential, iterative refinement such as self-reflection (Guo et al., 2025; Liu et al., 2025). However,
extended sequential reasoning can be more sensitive to the order of reasoning steps and may result
in failures (Chen et al., 2024b), and performance can start to degrade beyond a certain length due
to “overthinking” (Ghosal et al., 2025). Our goal is to study the effective use of diverse reasoning
traces to fine-tune small language models, essential for agentic AI (Belcak et al., 2025). Related to
our work on aggregating diverse reasoning modes, Yu et al. (2025); Zheng et al. (2025a) proposed
incorporating three specific reasoning modes: natural language, code-based, and symbolic reasoning.
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Parallel Reasoning. Parallel scaling methods such as self-consistency (Wang et al., 2022) and Best-
of-N (Lightman et al., 2023) improve LLM performance by generating multiple reasoning paths in
parallel and aggregating them. These methods fundamentally require choosing a temperature that can
generate diverse reasoning paths, but a recent theoretical work shows that increasing temperature can
sometimes fail to increase diversity if language models are not trained towards coverage (Verine et al.,
2025). Other search-based methods such as Monte Carlo tree search (MCTS) (Zhang et al., 2024)
and Tree of Thoughts (ToT) (Yao et al., 2023) apply heuristic-guided search with an external verifier
to do more deliberate search to increase the coverage. However, their dependence on heuristics
and domain-specific knowledge can limit their applicable tasks. Regarding training LLMs with
parallel reasoning traces, Yang et al. (2025b) proposes training with parallel CoTs decomposed
from sequential CoTs, and our concurrent work Wen et al. (2025) proposes to train with multiple
reasoning traces distilled from teacher models. These works show native parallel scaling can surpass
sequential scaling within certain token limits. Although we also show improvements in reasoning
performance by simply fine-tuning with parallel reasoning traces, we empirically highlighted the
limitation of manually assigning parallel think tags to target reasoning traces. If human assignment
or random enforcement routes mismatched traces to a tag with a unique reasoning mode learned,
the tag’s semantics blur due to bias in the ordering of parallel reasoning traces. This prevents tags
from initiating distinct reasoning modes. We are the only work that leverages parallel think tags to
construct a set-prediction loss via bipartite-matching optimization between tags and reasoning traces,
turning the tags into global forking tokens. Empirically, we also improve Pass@1 and Cons@k over
baselines fine-tuned with parallel reasoning traces on the same dataset, whether on subsets or the
full set. Another recent work (Zheng et al., 2025b) encourages the use of parallel thinking tags by
slightly upweighting rewards for correct trajectories that employ such tags during reinforcement
learning. However, the cold-start SFT that learns parallel thinking from diverse reasoning traces does
not incorporate a set-prediction loss, which is necessary to prevent collapse in reasoning diversity.

Set-based Global Loss in Deep Learning. DETR introduces end-to-end object detection with a
set global loss (Carion et al., 2020; Minderer et al., 2022), whose success in parallel bounding-box
prediction inspires our approach. We are the first to extend this to language modeling: While
DETR predicts a set of single tokens in parallel to match a list of bounding boxes, we predict a
set of sequential thinking tokens, initiated by global forking tokens, and evaluate the matchings
using autoregressive losses. We adapt set-based loss with autoregressive (AR) models, rather than
diffusion-based models (Zhao et al., 2025; Nie et al., 2025; Ho et al., 2020), because AR models
achieve superior reasoning performance. Several innovations are needed to make this loss practical
for parallel reasoning with AR models. For example, to populate the cost matrix we need N ×M
forward passes, one for each combination of N think tags and M reasoning traces, whereas DETR
requires only N forward passes for its N queries, since the same bounding-box predictions can be
reused to compute matching costs against different ground-truth boxes. We therefore emphasize
efficient training implementation in our extension, increasing training time by only 6.6% compared
to standard SFT (Appendix A.1).

5 CONCLUSION

In this work, we demonstrate that diverse reasoning traces can be leveraged to learn global forking
tokens which serve as prompts to initiate distinct reasoning modes that are both diverse and accurate.
We propose Set Supervised Fine-Tuning (SSFT), which employs bipartite matching between reserved
global forking tokens and diverse reasoning traces to compute a set-based language modeling loss.
We show that models trained with SSFT yield improvements in both Pass@k and Cons@k accuracy
over various k compared to standard SFT with temperature scaling. The proposed training method
also improves the usage of multi-target data and avoids collapsing distinct reasoning modes, which is
especially helpful in the context of distilling from multiple teacher models. In future work, we plan
to further investigate how performance scales with a larger number of distillation targets and reserved
forking tokens, which jointly determine the size of the underlying bipartite graph. In addition, we will
apply RFT to a model pre-trained with SSFT to incentivize optimal use of the learned global forking
tokens across a broader suite of tasks without requiring additional high-quality reasoning traces.
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A APPENDIX

In this appendix, we provide details omitted from the main text.

A.1 ALGORITHM: SSFT IMPLEMENTATION

Algorithm 1 Set Supervised Fine-tuning (SSFT)

Require: • πθ: base model
• N: Number of global forking tokens {g(i)}Ni=1
• D: Dataset with (at most) M reasoning traces per question
• B: Global batch size
• TL: The first TL number of tokens to match in matching cost (Equation 7).

Ensure: Output πθ

1: for each training step do
2: for k = 1, ...,B do
3: Sample an input prompt and the corresponding reasoning traces (xk, {r(j)k }Mj=1) ∼ D
4: Initialize cost matrix C ∈ RN×M

5: for i = 1, ...,N do
6: for j = 1, ...,M do
7: Compute the matching cost between g(i) and r

(j)
k by Equation 7.

Lmatching

(
g(i), r

(j)
k

)
= −sg

(
1

TL

TL∑
t=1

log πθ

(
r(j)k,t|xk, g(i), r(j)k,<t

))
(7)

8: Store the matching cost in C.

C(i, j) = Lmatching

(
g(i), r(j)k

)
(8)

9: end for
10: end for
11: Compute optimal matching σ̂k between {g(i)}Ni=1 and {r(j)k }Mj=1. Hungarian algorithm

(Kuhn, 1955) can be applied to C to efficiently compute Equation 9 (Equation 3).

σ̂k = argmin
σ∈SP

M∑
j=1

C(σ(j), j) (9)

12: end for
13: Compute the empirical set language modeling loss (Equation 10):

LHungarian(θ) = −
1

B

B∑
k=1

 M∑
j=1

Tr∑
t=1

log πθ

(
r(j)k,t|xk, g(σ̂k(j)), r

(j)
k,<t

) (10)

14: Update model parameters θ using gradients ∇θLHungarian(θ)
15: end for

Algorithm 1 presents the core SSFT implementation with optimal bipartite matching. In practice, the
nested-loop computation used to populate C is fully vectorized and can be executed in a single
forward pass. This does not blow up VRAM because (i) we do not store activations for these cost
evaluations (no backprop through matching costs), and (ii) We only need to use the first TL < Tr

NTP losses to compute the matching cost, as the NTP loss over the first few thousand tokens can
already differentiate many reasoning traces in terms of their modes. Nevertheless, our code also
supports matching over the full Tr tokens by chunking the computation into a few batches, so this
step does not become a VRAM bottleneck. Fine-tuning on 1k questions with 4 traces each, SSFT
(optimal matching) took 6.5 h for 6 epochs, compared to 6.1 h for standard SFT, adding only 6.6%
overhead.
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Algorithm 2 Queue-based Distributed SSFT with variable number of traces for each question

Require: • πθ: base model
• N: Number of global forking tokens {g(i)}Ni=1
• D: Dataset with (at most) M reasoning traces per question, variable m number of traces per

question
• B: Global batch size
• TL: The first TL number of tokens to match in matching cost (Equation 7).
• b: Original per-device global batch size (b ≥ M), This is “micro batch size*original grad

accumulation steps”
Ensure: Output πθ

1: for each epoch do
2: Initialize Queue Q for storing a sequence of (xk, {r(j)k }mj=1) where m is a variable number

that differs between input questions and different processes (GPUs)
3: Initialize Queue q for storing a sequence of sizes of sets m.
4: for every (xk, {r(j)k }mj=1) ∈ D do
5: Q← Q.enqueue((xk, {r(j)k }mj=1))
6: q ← q.enqueue(m)
7: all_q_list = All-gather(q)
8: Initialize list temp_batch
9: while All processes have at least b sequences based on all_q_list do

10: while temp_batch does not have at least b sequences do
11: temp_batch← temp_batch.append(Q.dequeue())
12: q.deque()
13: end while
14: compute the the maximum per_device global batch size bmax currently in all processes

using all_q_list (inferred, no collective operation)
15: Pad temp_batch to size bmax by appending “pad sequences” as needed.
16: Update all entries in all_q_list based on inferred usage
17: Perform one SSFT training step, SSFT (πθ, temp_batch, bmax)
18: end while
19: end for
20: end for
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The primary VRAM bottleneck in SSFT remains the backpropagation Step 10, regardless of whether
we use optimal or random matching, because the effective batch size scales with M. To mitigate this,
we split the backward pass into several gradient-accumulation steps. Although our experiments use
the same number of reasoning traces per question, we also support variable number of targets using
our queue-based batching in Algorithm 2. The complication arises when using distributed training
with a variable-sized batch, as different processes require the same per-device batch size to perform
collective operations. This is mitigated by padding with “PAD sequences” to align batch sizes. Our
implementation minimizes the number of “PAD sequences” by storing a variable number of targets
in a queue and dequeuing multiple items to form a per-device global batch, so smaller batches can be
stitched together instead of always being padded.

A.2 LEARNED MATCHINGS BETWEEN GLOBAL FORKING TOKENS AND TRACES

Initially, any of the bipartite matching configuration σk ∈SP can be computed as optimal, as the
reserved global forking tokens {g(i)}Ni=1 have no specific correlations with these traces {r(j)}Mj=1.
This can be observed in Figures 7 and 8 that c(σk), the count of configuration σk being optimal
during training, uniformly increases on all configuration indexes. However, as training goes with
SSFT, we notice only a subset of SP accumulates mass. This indicates there are some unique
correlations learned between {g(i)}Ni=1 and {r(j)}Mj=1. This subset is denoted as Sp = {σk}pk=1,
and we call the unique edges in Sp as learned matchings.

A.2.1 HOW TO CHOOSE THE GLOBAL FORKING TOKEN FOR PASS@1

To find Sp, we can simply track which configurations σ still accumulate mass in the last epoch.
Then we can connect all the unique edges in Sp to visualize learned matchings. However, multiple
global forking tokens may share the maximum number of connected edges in the learned matchings.
To break the tie, we treat the counts as edge weights and select g(i) with the largest weighted degree.
We provide this implementation in our code.

A.3 TRAINING DETAILS

A.3.1 TRAINING DATASETS

32B experiments with questions from s1(Main): We explain the process of generating our training
dataset for experiments in Table 1, Figure 4, Figure 5, Figure 6, Figure 7. First, we use the 1000
questions from s1 (Muennighoff et al., 2025) and populate a pool of reasoning traces by distilling
from GPT-OSS-120B-high reasoning, GPT-OSS-120B-medium reasoning, DeepSeek R1, Gemini
Flash2.0 Thinking, and Claude4/4.1. We use temperature 1.0, maximum length of 32768, and sets
high reasoning effort unless specified. We generate two traces per teacher model. We use Claude3.5
Sonnet to extract the answer from the distilled solutions and compare with the ground-truth answer.
The correctness of these distilled traces are shown in 3.

For s1k-4mixed-reasoning dataset, we sample 4 traces per question from this pool, so the dataset
consists of 1000 questions, each paired with 4 reasoning traces. This dataset was used to fine-tune
SSFT-32B, SSFT-32B (random σ), and SFT-mixed-distill-32B.

For fine-tuning SFT-OSS-distill-32B model, we only use the 1000 traces from “Run1” GPT-OSS-
120B with high reasoning effort.

For obtaining the visualizations in Figure 7 and Figure 8, we fine-tune models using the same teacher
models for all 1000 questions. we always choose the 4 traces from “Run1” of GPT-OSS-120B-high,
GPT-OSS-120B-medium, DeepSeek R1, and Gemini Flash2.0 Thinking. As mentioned in Section
3.3 and Figure 7, we fine-tune under 3 bipartite matching hyperparameters to conduct this case study.

A.3.2 TRAINING HYPERPARAMETERS

For consistency, we use Qwen2.5-32B-Instruct (Yang et al., 2025a) as the base model for all of our
32B experiments. We use standard fine-tuning hyperparameters: we train for 6 epochs with a global
batch size of 32, which is derived from 4 gradient accumulation steps and distributed training with
8 GPUS (4× 8 = 32). This results in 756 gradient steps. The maximum sequence length is set to
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GPT-OSS-
120B-high

GPT-OSS-
120B-medium

DeepSeekR1 Gemini
Flash2.0
Thinking

Claude
Opus4/4.1

Run1 796/1000 769/1000 620/1000 538/1000 656/1000
Run2 785/1000 753/1000 641/1000 545/1000 647/1000

Table 3: The number of correct reasoning traces distilled for the 1,000 questions in s1 by different
teacher models. This evaluation is done by Sonnet comparing the predictions and the ground-truth
answers. We see that GPT-OSS has the highest accuracy for s1 dataset.

32,768. We train with bfloat16 with a learning rate of 1e− 5 warmed up linearly for 5% and then
decayed to 0 using a cosine schedule. We choose AdamW optimizer (Loshchilov & Hutter, 2017)
with β1 = 0.9, β2 = 0.95, and weight decay 1e− 4. We only backpropagates the completion loss,
which is the loss on reasoning traces and the answers. Fine-tuning SSFT-32B plus loggings took
6.5 hours on 8 NVIDIA B200 GPUs using PyTorch FSDP, Liger Kernel (Hsu et al., 2024) for fused
cross entropy loss, and FlashAttention-2 (Dao, 2023) for fused attention computation. Fine-tuning
SSFT-32B (random σ) took 6.3 hours, and Fine-tuning SFT-mixed-distill-32B took 6.1 hours. Even
our baseline SFT-OSS-distill-32B with only one trace per question, and our attempt to reproduce
s1.1 took 1.66 hours, which is longer than the time reported by Muennighoff et al. (2025). This is
due to using 8 GPUs instead of 16 GPUs, hardware and package differences. When training with
s1k-4mixed-reasoning, we added one extra epoch from 5 epochs to 6 epochs, since we have 4x
reasoning traces, but we did not linearly increase the number of epochs, as these traces can be similar,
and the number of distinct questions is still 1,000. Overall, we made sure all of our models are
fine-tuned with consistent hyperapameters.

A.3.3 VISUALIZATION OF SSFT TRAINING DYNAMICS

Figure 9 shows the standard training dynamics of SSFT with optimal bipartite matching. The resulting
model is SSFT-32B. The loss plotted here is Equation 5.
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Figure 9: Training dynamics of SSFT-32B on s1k-4mixed-reasoning

Figure 10 shows the evolution of bipartite matching during SSFT. Figures 10a and 10b show that the
gap between optimal bipartite matching cost and non-optimal bipartite matching cost under other σ
keeps widening during training. This means that these reasoning traces are indeed starting to match
unique global forking tokens. Even though SSFT effectively optimizes a non-stationary objective
which depends on model parameters θ, the widening gap shows the inner discrete optimization
is converging as training goes. Figure 10c also confirms that the model learned some unique
correlations between {g(i)}6i=1 and {r(j)}4j=1, as only a subset of matchings are still computed as
optimal. Compared to Figure 7, we see more σ accumulating mass towards the end. This is due
to having more mixed diverse reasoning traces, so the model learned more intricate associations
between these global forking tokens and truly diverse reasoning traces.

A.3.4 ABLATION STUDY TRAINING DETAILS (REMOVING HIGH QUALITY SMALL DATASET)

For this ablation study, we choose Open-R1-Math220k default split, which has 93,000 math questions
and 2 ∼ 4 traces. Since Qwen2.5-Math-7B is a widely fine-tuned model using this dataset, we
also choose it as our base model. We train for 3 epochs using 8 A100 GPUs, which took around 4
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Figure 10: Dynamics of bipartite matching during the fine-tuning of SSFT-32B on s1k-4mixed-
reasoning.

days. Our hyperparameters are mostly consistent with the recommended hyperparameters by Face
(2025). We fine-tune both SSFT-OpenR1-93k-7B and SFT-OpenR1-93k-7B with a maximum length
of 32768, learning rate of 4.0e− 05 warmed up linearly for 3% and decayed to 0 following cosine
schedule, 8 gradient accumulation steps. For our SSFT method, we reserve N = 4 global forking
tokens, and use the first 1000 tokens for matching. Again, only the completion loss is used for
optimizing the model parameters.

A.4 EXAMPLES OF SSFT-32B REASONING TRACES INITIATED BY DIFFERENT GLOBAL
FORKING TOKENS

We randomly picked a set of six parallel generations from those where SSFT-32B correctly answered
a problem from AIME 2025 under all six global forking tokens. This is question 11.

Problem 11 (AIME25)

A piecewise linear periodic function is defined by

f(x) =

{
x, if x ∈ [−1, 1),
2− x, if x ∈ [1, 3),

and f(x+ 4) = f(x) for all real x.

The graph of f(x) has a sawtooth pattern. The parabola x = 34y2 intersects the graph of
f(x) at finitely many points. The sum of the y-coordinates of these intersection points can be
expressed in the form

a+ b
√
c

d
,

where a, b, c, d are positive integers, gcd(a, b, d) = 1, and c is squarefree. Find a+ b+ c+d.

Here are the 6 parallel generations by SSFT-32B. We see distinct reasoning traces produced by
prompting with a unique g(i) ∈ {g(i)}6i=1. The differences are highlighted in red comments.

<think1> — Periodization + Quadratic Families + Vieta/Telescoping

<|im_start|>assistant
<|im_start|>
<think1>
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“write x = t + 4k with t ∈ [−1, 3)” ... ... “Case 1 (t ∈ [−1, 1), y = t) . . . Case 2

(t ∈ [1, 3), y = 2− t)” ... ... 34t2− t−4k = 0 and t =
1±
√
1 + 544k

68
... ... “let u = 2− t”

and u =
−1±

√
273 + 544k

68
... ... Thus u =

−1 + 5
√
185

68
. ... ... “telescopes to rational

constant 9/34” ... ... ([Comment:] periodize x = t + 4k, solve two quadratic families, use
Vieta pair-sums; edge-period gives the irrational y)
</think1>
<|im_start|>answer

Answer: .... 259

<think2> — Nearest-Multiple-of-4 Reduction

<|im_start|>assistant
<|im_start|>
<think2>
Start from y = f(34y2) . . . . . . write 34y2 = 4k+r with r ∈ [−1, 3) (choose k =

⌊
34y2+1

4

⌋
)

. . . . . . Branch A (r ∈ [−1, 1)): y = r ⇒ 34y2 − y − 4k = 0 . . . . . . Branch B (r ∈ [1, 3)):
y = 2− r ⇒ 34y2 + y − (2 + 4k) = 0 . . . . . . Vieta: pair-sums + 1

34 and − 1
34 cancel over

full periods . . . . . . only the edge/partial period remains (k = 8, descending branch) . . . . . .

y =
−1 +

√
273 + 544 · 8
68

=
−1 + 5

√
185

68
. . . . . .

([Comment:] reduce to r ∈ [−1, 3) via nearest multiple of 4; full periods cancel by ± 1
34

pair-sums; only the boundary k = 8 root contributes)
</think2>
<|im_start|>answer

Answer: .... 259

<think3> — Paper-Style Sections; Explicit Pair-Sums and Totals

<|im_start|>assistant
<|im_start|>
<think3>

“Now we need sum of all y-coordinates” ... ...
8∑

n=0

y1,n +

7∑
n=0

yC,n ... ... y =
−1 +

√
4625

68

... ... “Therefore S2 =
5
√
185− 17

68
” ... ... “Total sum S . . . ” ... ... ([Comment:] formal

write-up; separates sums by family, explicitly displays the boundary y = −1+
√
4625

68 , then
totals)
</think3>
<|im_start|>answer

Answer: .... 259

<think4> — Set/System Framing Before Algebra

<|im_start|>assistant
<|im_start|>
<think4>
“the set {(x, f(x))} . . . Intersecting it with the parabola x = 34y2 requires solving
y = f(x), x = 34y2.” ... ... (then proceeds to the same two-case algebra) ... ...
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u+ =
−1 +

√
273 + 544 · 8
68

=
−1 + 5

√
185

68
. ... ... ([Comment:] definition-first fram-

ing; after setting up the system, it reaches the same boundary u+ value on the partial period)
</think4>
<|im_start|>answer

Answer: .... 259

<think5> — Outline & Symmetry: Full Periods Cancel, Last Period Contributes

<|im_start|>assistant
<|im_start|>
<think5>
“the sum is zero . . . That’s a key insight.” ... ... “for each full period (k = 0 to k = 7), the
sum . . . is zero . . . now consider the partial period k = 8” ... ... Compute upos(k=8) =

−1 +
√
4625

68
. ... ... (term-by-term cancellation examples for k = 0, 1) ... ... ([Comment:]

symmetry explains full-period cancellation; the lone boundary contribution at k = 8 supplies
the irrational term)
</think5>
<|im_start|>answer

Answer: .... 259

<think6> — Stream-of-Consciousness Scratchwork

<|im_start|>assistant
<|im_start|>
<think6>
“Okay, so I need to solve this problem . . . Let me try to break this down step by step.” ...

... “Wait, actually, no. Wait,” ... ... yA,8 =
−1 +

√
4625

68
. ... ... ([Comment:] exploratory

self-checks; reaches the same boundary y on the partial period)
</think6>
<|im_start|>answer

Answer: .... 259

A.5 ALTERNATIVE IMPLEMENTATION OF TRAINING WITH MULTI-TARGET SEQUENCES

Figure 11 shows an alternative implementation for training with multiple target parallel sequences.
Instead of flattening multi-target data along the batch dimension, we can also concatenate parallel
reasoning traces along the sequence dimension, modify the causal attention matrix, and position ids
for positional embeddings. While easy to implement, this version extends the sequence length and
cannot perform gradient accumulation along the batch dimension to maintain the same VRAM as
training with a single reasoning trace. Since most fine-tuning already sets the micro-batch size to
1 due to the increased number of reasoning tokens already present in a single reasoning path, this
implementation also cannot further shrink the micro-batch size to accommodate the extended context
length. In addition, the code that uses the initial flash-attention implementation, which requires
causal attention matrix, is not compatible with this setup. This implementation is also less flexible in
maintaining a consistent number of sequences per global batch.
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Figure 11: An illustration of training with multiple parallel targets along the sequence dimension.
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