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Abstract

Ensuring that collections of natural-language
facts are globally consistent is essential for
tasks such as fact-checking, summarization,
and knowledge base construction. While Large
Language Models (LLMs) can assess the con-
sistency of small subsets of facts, their judg-
ments are noisy, and pairwise checks are in-
sufficient to guarantee global coherence. We
formalize this problem and show that verify-
ing global consistency requires exponentially
many oracle queries in the worst case. To
make the task practical, we propose an adap-
tive divide-and-conquer algorithm that identi-
fies minimal inconsistent subsets (MUSes) of
facts and optionally computes minimal repairs
through hitting-sets. Our approach has low-
degree polynomial query complexity. Experi-
ments with both synthetic and real LLM oracles
show that our method efficiently detects and
localizes inconsistencies, offering a scalable
framework for linguistic consistency verifica-
tion with LLM-based evaluators.

1 Introduction

Ensuring the global consistency of sets of natural-
language facts is essential for core NLP applica-
tions such as multi-document summarization, fact-
checking, and knowledge base construction (Chen
et al., 2024; Guo et al., 2022). For example, re-
ports describing the same real-world event may
contain overlapping or partially conflicting claims;
systems must determine whether all claims can
jointly hold, and if not, identify where contradic-
tions arise. Crucially, it is not enough to merely
detect that some inconsistency exists. In many
downstream pipelines, naively discarding all facts
whenever a contradiction is detected is unaccept-
able: a single conflict can cause large numbers of
otherwise correct statements to be removed, degrad-
ing the quality of summaries, reports, or databases.
What is needed instead are explanations of incon-
sistency and principled ways to repair fact sets by
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retaining as many mutually consistent facts as pos-
sible while isolating the smallest conflicting groups.
This motivates a focus on Minimal Unsatisfiable
Subsets (MUSes), the smallest sets of claims that
cannot jointly be true.

Large Language Models (LLMs) are increas-
ingly used as judges for evaluation and verification
tasks (Gu et al., 2025; Zhu et al., 2025; Wang et al.,
2024a), and they can often assess whether a small
set of claims appears consistent (Hong et al., 2025;
Li et al., 2024). However, pairwise checks do not
imply global consistency, and exhaustively query-
ing all subsets is infeasible (Kumar et al., 2023).
Moreover, direct “all-at-once” judgments become
increasingly unreliable as the number of claims
grows, due to longer inputs and denser interactions
among statements. The central challenge is there-
fore: how can we verify global consistency over
many claims while issuing as few noisy LLM-judge
calls as possible, and while retaining fine-grained
explanations of inconsistency?

Prior NLP work on factuality, contradiction de-
tection, and fact verification has largely operated
at the level of individual claims or pairs—for ex-
ample, verifying a claim against evidence (Wang
and Shu, 2023; Tan et al., 2025), decomposing
complex claims (Pan et al., 2023), or retriev-
ing supporting passages (Aly and Vlachos, 2022;
de Marneffe et al., 2008). Classic surveys em-
phasize the importance of factual consistency in
NLP systems (Thorne and Vlachos, 2018). How-
ever, these approaches do not address global, multi-
Statement inconsistency detection: ensuring that a
set of extracted facts is jointly coherent. In real
NLP pipelines—such as multi-document retrieval-
augmented generation, large-scale information ex-
traction, or report generation—the extracted fact
set itself can become contradictory even when each
claim is individually supported. From a computa-
tional perspective, global consistency is intractable
in general (Lee and Leung, 2010), but the pres-
ence of small conflict sets or structural regularities
makes adaptive, query-efficient approaches viable



in practice.

In this paper, we formalize scalable global con-
sistency verification as querying a noisy subset-
consistency oracle, instantiated by an LLM judge.
We show that global consistency cannot be certi-
fied from pairwise checks alone and that worst-case
query complexity is exponential even under strong
assumptions. To make the task practical, we pro-
pose an adaptive divide-and-conquer algorithm that
localizes Minimal Unsatisfiable Subsets (MUSes)
within a set of natural-language claims and, when
desired, computes minimal repairs via hitting-set
duality. We provide theoretical bounds on query
complexity and noise amplification, and empiri-
cally demonstrate that the proposed method effi-
ciently detects and explains contradictions using
LLMs, substantially improving recall over direct
“all-at-once” judging while preserving high preci-
sion.

2 Related Work

Local Consistency Verification. Fact and claim
consistency verification with LLMs has attracted
growing interest, motivated by challenges such as
hallucinations and misinformation (Rahman et al.,
2025; Singhal et al., 2024). Early methods focused
on extracting structured knowledge units such as
subject—predicate—object triples from both LLM
outputs and reference texts to detect local inaccura-
cies and support retrieval-augmented verification
(Chen et al., 2025; Cao et al., 2025; Lewis et al.,
2021). Other approaches decompose responses
into atomic claims that are checked independently,
which works well for short texts but struggles in
long-form or multi-document settings (Hu et al.,
2025; Wanner et al., 2024). Reranking methods
(Liu et al., 2025) can help mitigate this limitation,
but typically require access to model internals, lim-
iting their practical deployment.

Global Consistency and Contradictions. Be-
yond knowledge-unit extraction, much work has
studied factuality and contradiction detection, of-
ten casting the problem as a natural-language infer-
ence (NLI) task (Thorne et al., 2018; Kryscinski
et al., 2020). Benchmarks such as FEVER and
VitaminC emphasize identifying local entailment
or contradiction, but they do not address whether
an entire set of claims can jointly be true (Thorne
et al., 2018; Schuster et al., 2021). More recently,
LLMs themselves have been used as judges for fac-
tuality and coherence (Zheng et al., 2023; Wang
et al., 2024b), extending this line of work beyond
classifier-based approaches. Concurrent work has

studied logical consistency of LLLMs on proposi-
tional queries over knowledge graphs (Ghosh et al.,
2025), e.g. whether A A B is judged consistent
with A and B separately, improving performance
via fine-tuning.

To our knowledge, our work is the first to formal-
ize scalable global consistency verification, prove
theoretical query-complexity bounds, and propose
adaptive algorithms for isolating minimal inconsis-
tent subsets under noisy LLM oracles. We view this
as the first step toward principled, scalable methods
for global consistency verification with LLMs.

3 Setting the Stage

Problem Definition. Given a finite fact set F' =
{f1,..., fn}, we assume that there exists a ground
truth function A : 21 — {cons, incons}, i.e., takes
a (sub)set of facts and returns whether it is globally
consistent (cons) or not (incons).

Let F' be a finite set of facts and C =
{C4,...,Cy} a family of scopes with C; C F.
We seek a kept set £/ C F' that maximizes cover-
age while satisfying all per-scope constraints:

max |F'| st A(F'NC;)=cons, Vi€ [m].

F'CF

Define C; £ F'nC;. Then C; C C; and
A(C;) = cons for all 4, and |2, Ci| = |F'|.
An equivalent formulation of the above objective
in terms of minimizing a size of hitting set is for-
mulated in Section A.1!

Complexity Landscape. In the worst case, solv-
ing the above optimization problem is NP-hard,
as A can be used to encode any function (such as
boolean satisfiability). Note that it is also possible
for all fact pairs to be mutually consistent while
the full set remains globally inconsistent (see Sec-
tion A.2).

LLM as Noisy Subset-Consistency Oracle. We
simulate A using LLMs. Given a finite fact set
F = {fi1,..., fn}, we model a pretrained LLM
as a noisy subset-consistency oracle (NSCLM) O
as follows. For any subset S C F' we prompt “Are
the following claims mutually consistent?”” and re-
ceive a stochastic response O(.5) € {cons, incons}.
Let «, 8 denote the error rates on the oracle O’s
performance.

Pr[O(S) = incons | A(S) = cons| < «
Pr[O(S) = cons | A(S) = incons] < S.

'The hitting set problem seeks the smallest subset of ele-
ments that intersects every set in a given family.



When using LLM as O, naively querying O(F') is
unreliable in practice as the set size of [ increases,
and as noted above pairwise checks are insufficient
to detect inconsistencies.

4 Method

We now formalize our approach to consistency
checking under a NSCLM. Our algorithm assumes
as input a set of natural-language facts F' and a fam-
ily of constraints C with C; C F for all C; € C.
Constraints may be given externally (e.g., from a
schema or ontology) or constructed automatically
from F'; here we focus on the given-constraint case
for clarity. We start with the definition of Minimal
Unsatisfiable Subset (MUS) which forms the basic
building block of our approach.

Definition 4.1 (Minimal Unsatisfiable Subset w.r.t.
Oracle O). A subset U C F' is an Minimal Un-
satisfiable Subset (MUS) if O(U) = incons but
O(U") = cons for all proper subsets U’ C U.

Our procedure (Algorithm 1) runs an itera-
tive two-step loop—MUS extraction followed by
greedy repair via a hitting set—repeating until all
constraints are consistent , and return the surviving
facts F. The soundness guarantee of the procedure
is presented in Appendix A.3.

Assumptions. Our theoretical analysis assumes
(1) approximate independence of repeated oracle
calls so that majority voting reduces noise, (ii)
small conflict size k in practice (typically k < 3),
and (iii) constraint scopes C; that are either exter-
nally defined or automatically constructed from
entity or event clusters. These assumptions are
used only to derive worst-case guarantees and are
not required by the empirical method: all experi-
ments use a single oracle call per query (r = 1)
with automatically constructed scopes.

MUS Extraction via Divide-and-Conquer. Our
MUS localization procedure builds on the Quick-
Xplain algorithm (Junker, 2004), which given a
set of possibly inconsistent constraints, identifies
a minimal unsatisfiable subset through a recursive
divide-and-conquer strategy. By recursively parti-
tioning the constraint set and reusing intermediate
results, QuickXplain achieves logarithmic query
growth in subset size. We discuss more details
about QuickXplain in Appendix C.

Given an input (O, S, B), where B denotes a
background set of facts assumed to be consistent,
QuickXplain begins by splitting .S’ into two parts,
S1 U Ss, and querying the oracle O on B U S;. If
O(B U S7) = incons, it continues by recursing on

Algorithm 1: QXR
Input: Facts F;

Constraints C' = {C4,...,Cnp};
Noisy LLM oracle O
Output: Consistent facts F’

1 F' « F;

2 Oincons < 5

3 while 3C; € C : O(C;) = incons do

4 U<+ o,

s | for C; € C with O(Cj) = incons do
6 | U+~ UU{QX(0,C},2)}

7 H < GREEDYHITTINGSET(UA);

s | F'« F'\ H;

9 C(—{Cj\H:CjEC};

10 Oincons < Oincons UU

1 return F’

(S1, BUS3); otherwise, it proceeds with (S2, BU
S7). The recursion keeps narrowing the search until
|S| = 1, ultimately returning a subset-minimal
inconsistent set U.

Assume S contains a MUS U of size k. Start-
ing from QX(O, S, @), the QuickXplain proce-
dure returns some MUS U’ C S using at most
O(klog|S]) oracle calls to O.

Greedy Repair via Hitting Set (Minimal Correc-
tion Set). Once MUSes are extracted, we identify
the inconsistent scopes:

Tincons = {j € [m] : O(C}) = incons}. (1)

For each j € Tipcons, we obtain a MUS U; C C},
and form the family of conflicts Y = {U; : j €
Tincons - We then compute a repair set H C F that
intersects every MUS:

vUeld, HNU#@. ()

Such a minimal hitting set H corresponds exactly
to a Minimal Correction Set (MCS)—the smallest
subset of facts whose removal restores global con-
sistency. We remove H to obtain the consistent sub-
set F/ = F'\ H. Intuitively, the hitting set selects
the fewest facts that “break” all discovered inconsis-
tencies. For example, if U = {{a,b,c},{a,d,e}},
then any H intersecting both conflicts is valid, and
the minimal hitting set H = {a} yields the max-
imal consistent subset F’' = {b,c,d, e}. In prac-
tice we use a greedy solver that iteratively selects
the fact covering the largest number of uncovered
MUSes, achieving the optimal logarithmic approx-
imation ratio for this NP-hard problem but can be
approximated efficiently (see Section B.



| VitaminC | FEVER
| Direct (baseline) QXR (ours) | Direct (baseline) QXR (ours)
Model /P R F1| P R F1| P R FL|P R Fl

Claude 3.7 (Anthropic, 2025a) 0.979 0.854 0.909]0.956 0.975 0.965]0.992 0.805 0.873|0.983 0.977 0.980
Claude 4 (Anthropic, 2025b) 0.956 0.877 0.913]0.938 0.983 0.960|0.995 0.833 0.891|0.981 0.977 0.978
DeepSeek-R1 (DeepSeek-Al et al., 2025) |0.980 0.730 0.827{0.973 0.990 0.981|0.989 0.821 0.875|0.988 0.980 0.983
GPT-OSS-120B (OpenAl, 2025) 0.984 0.926 0.953]0.956 0.995 0.975]0.976 0.975 0.976|0.992 0.980 0.985
Mistral Large (2407) (Al 2023) 0.955 0.603 0.724]0.968 0.978 0.972]0.970 0.780 0.848|0.964 0.990 0.976

Table 1: Evaluation of consistent fact sets I’ on two datasets (VitaminC (Schuster et al., 2021) / FEVER
(Thorne et al., 2018)). Precision (P), recall (R), and F1 are computed with respect to gold consistent subsets. QXR

yields cleaner and more complete F’ than direct all-at-once LLM judging.

Let N be number of facts in F', m = |C| be
the number of constraints, k the maximum size of
any MUS discovered by Algorithm 1, and I be
the number of outer rounds of Algorithm 1 until
termination.

Theorem 4.2 (Query Complexity of Algorithm 1).

Algorithm 1 makes at most I - m - (k log N) oracle
calls to LLM O.

S Experiments

5.1 Experiment Setting.

Datasets We use VitaminC (Schuster et al., 2021)
and FEVER (Thorne et al., 2018) to global consis-
tency by grouping 30 factual statements per ex-
ample. In VitaminC, each cluster contains 24-28
compatible claims and 2-6 injected contradictions
from REFUTES edits, each forming a size-2 ground-
truth MUS {c",c"}. In FEVER, we combine
0-8 REFUTES claims (with evidence) with 14-18
SUPPORTS claims; each refuting claim and its evi-
dence define a ground-truth MUS. Removing either
the refuting claim or its evidence yields consistent
variants, producing dense contradiction structures
that require multi-claim reasoning.

Direct LLM Consistency. We first consider a
direct-LLM baseline that queries the model once
over the entire fact set I, prompting it to return
the largest subset F/ C F’ that is jointly consistent.
This corresponds to treating the LLM as an unstruc-
tured oracle O(F') that attempts to approximate the
ground-truth function A(F’) in a single step.

Evaluation. Given an initial fact set /', the model
produces a repaired subset F’ after removing
claims identified as inconsistent. We evaluate the re-
sulting F” against the gold consistent subset Fyq4,
defined as the maximal subset of I’ that contains
no injected contradictions (i.e., all ground truth
satisfiable claims). Precision, recall, and F1 are

computed on the surviving facts:

_ |F, N Fgold‘

’F’ N Fgold‘
P = =
|F|

: R=
‘Fgold‘

This directly measures how accurately the model
preserves all and only the consistent information,
matching the formal objective in Theorem A.1.
All experiments use a single oracle call per query
(r = 1) and the simplest scope setting C' = F,
without majority voting or independence assump-
tions; such assumptions are used only in the theo-
retical analysis.

5.2 Results and Analysis.

Table 1 shows consistent gains from MUS-based
reasoning. Across all models, QXR yields cleaner
consistent subsets F” with substantially higher F1
by avoiding the over-removal seen in direct all-at-
once prompting, which often “panic-prunes” large
clusters once any conflict is detected. By adaptively
isolating minimal conflicts and repairing only what
is necessary, QXR preserves nearly all valid in-
formation while restoring global consistency. We
observe the same trend on a synthetic dataset (Di-
rect: P=0.515, R=0.993, F1=0.644; QXR: P=0.664,
R=0.878, F1=0.724), indicating more targeted in-
consistency identification (see Section E).

All experiments use a zero-shot LLM judge.
Evaluating the direct baseline with Chain-of-
Thought, decomposition, few-shot, and self-
consistency prompting yields the same failure
mode: high precision but low recall, showing ro-
bustness to prompt design (see Section F).

6 Conclusion

We introduced the task of global fact consistency
verification under noisy LLLM oracles, established
limits on pairwise sufficiency and query complex-
ity, and proposed an adaptive algorithm that local-
izes minimal inconsistent subsets and repairs them
via hitting-set. On VitaminC clusters, the method



improves recall and F1 while preserving high pre-
cision, showing that structured querying can turn
LLMs into scalable consistency checkers. Future
work will extend to larger knowledge graphs and in-
tegrate with retrieval and summarization pipelines.

Limitations

Our theoretical analysis assumes repeated oracle
queries can reduce noise under approximate inde-
pendence. In practice, however, LLM errors may
be systematic rather than random, and repeated
queries to the same model do not necessarily im-
prove reliability. For this reason, our empirical
evaluation does not rely on majority voting or re-
peated queries: all experiments use a single LLM
call per query (r = 1) with the simplest scope set-
ting (C = F'). We treat the independence assump-
tion solely as a modeling abstraction for deriving
worst-case guarantees.

A related limitation is that noise reduction in
real systems may require querying diverse LLMs
rather than repeatedly querying the same model.
Exploring ensemble or cross-model consistency
checking is a promising direction for future work,
but is beyond the scope of this paper.

Finally, our experiments focus on moderate-
sized fact sets constructed from existing bench-
marks. While these settings already expose sub-
stantial failures of direct LLM judging, larger and
more heterogeneous fact collections—such as those
arising in long-context RAG or large-scale knowl-
edge extraction—may introduce additional chal-
lenges. Designing benchmarks that better capture
such regimes remains an open problem.
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A Theorems and Proofs

Let F' = {f1,...,fn} be a finite fact set, C' =
{C4,...,Cy} with C; C F be a collection of con-
straint scopes, and a perfect oracle O : 2 —
{cons, incons} that returns whether a subset of
facts is jointly consistent. Throughout the proofs,
we will use two standard properties.

* Monotonicity: If U C S C Fand O(U) =
incons then O(S) = incons.

* Existence of MUS: If O(S) = incons and S
is finite then .S containsa MUS U C S.

These follow from finiteness and the definition of
minimality.

A.1 Objective Equivalence and Reduction to
Hitting Set
Theorem A.1. Objective Equivalence Maximizing

coverage

A(F'NC;) = cons. Vi € [m]

3)

max |[F'| s.t.
FICF

is equivalent to minimizing deletions

min |R| s.t.

RCF A((F'\ R) N C;) = cons,

4

Proof. Define a bijection between solutions R =
F\ F'and F' = F \ R. Then

|F'| = |F| - |R. (5)
Hence, maximizing |F’| is equivalent to minimiz-

ing |R|. Under this bijection, the feasibility con-
straints are identical. O

Vi € [m]

Let Ajncons be the family of all MUSes possible
in C'. Formally, based on Definition 4.1, we define

Aincons - {U S C] . .7 S [m], U IS aMUS W.I.t. A}

Theorem A.2. A set R C F is feasible iff it is a
hitting set for Aincons.

Proof. In one direction, assume R C F' is feasible
for minimum deletion. Suppose for contradiction,
there exists U € Ajncons With RNU = . By
definition of Ajncons, there is some ¢ with U C C},
and thus U C (F'\ R)NC;. Since A(U) = incons
by monotonicity (F'\ R)NC; would be inconsistent,
contradiction to Equation (4). Hence, RN U # &
for all U € Ajncons; i.€., R is a hitting set.

For the other direction, assume R is a hitting set
for Ajncons, i.e. RNU # & for all U € Ajncons.
Suppose for contradiction that R is not feasible;
then there exists some ¢ with A((F'\ R) N C;) =
incons. By the existence-of-MUS property, (F'\
R)NC; contains aMUS U C (F'\ R) N C;. Then
U € Aincons but U N R = @, contradicting that R
hits all MUSes. Hence A((F' \ R) N C;) = cons
for all 7, i.e. R is feasible. OJ

A.2 Pairwise Checks Are Insufficient for
Global Consistency

Theorem A.3 (Pairwise Insufficiency). Even with
access to A, there exist F' of size N > 3 such
that all pairs are consistent, but F' is inconsistent
globally.

Proof. Given A we now want to show pairwise
consistency does not imply global consistency.
Let the universe be boolean assignments to vari-
ables A, B,C € {0, 1}. Consider the three facts
f1:A@le,fg:B@C:Lfgic@Azl.
Then, any two pairs can be satisfied, for example
f1, fo are satisfied with A = 1, B = 0,C = 1.
However, this is jointly unsatisfiable, from f; and
for A = =B and C = =B hence A = C,
then C' & A = 0 which contradicts f3. Hence,
f1, Afa, Afs is inconsistent. We can think of this
as a graph colouring problem, for example the con-
straints A # B, B # C,C # A requires a 2-
colouring of a 3-cycle, which is impossible. 0

A.3 Soundness of Algorithm 1

Theorem A.4 (Soundness under Perfect Oracle).
Assume that the LLM oracle O has zero error (o0 =
0,8 = 0), then for every i € |m)|, the retained
subset F' 2 I\ R satifies

A(F' N C;) = cons. (6)
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Proof. If O is perfect, then it should match the
groun-truth A on all inputs. Suppose for con-
tradiction that O(F’ N C;) = incons for some
i € [m]. By MUS existence, there is a MUS
UC F'NC;. Then, U C C;, so U € Ajncons.
We know U C F\ Rsoweknow UNR = &
contradicting R hits every U € Ajncons.- Therefore,
O(F'" N C;) = cons for all i. O

In practical scenarios, the MUSes Ojncons €X-
tracted by Algorithm 1 may contain errors, as the
procedure depends on a noisy oracle O. However,
F’ generated by in Algorithm 1 is still sound with
respect to the MUSes found.

Theorem A.5 (Practical Soundness w.r.t. Extracted
Conflicts). Let Oincons be the set of MUSes actually
extracted by the Algorithm I under O. Let R C F'
satisfy RNU # & forallU € U. The retained
set F'\ R is consistent with respect to the extracted
conflicts Oincons.

Proof. Forevery U € Oincons, RNU # @& implies
U ¢ F \ R. Thus none of the discovered MUSes
in Ojncons remain after removal. ]

A.4 Error Reduction under Repetition

Let the true perfect oracle answer for a query be
Y € {cons,incons}. A noisy oracle O is repeat-
edly queried r times on the same set .S. Each rep-
etition returns ﬁ € {cons,incons}, t = 1,...,7.
For each repetition and conditioning on the true
label Y, we get

Pr(Y, £Y|Y) <e &2 max{a,B} < % (7)

We assume independence across repetitions, e.g.,
{Y;}7_, are independent conditioned on Y. We
also assume 7 is odd.

Theorem A.6 (Error Reduction Under Repetition).
Let O be an («, 3)—noisy subset-consistency oracle
with max{a, f} < % If each query is evaluated
r times independently and aggregated by majority
vote, the effective error rate per aggregated call is
at most exp(—2rvy?) where v = % — max{a, 8}

Proof. The majority vote is wrong iff at least half
of the repetitions are wrong, using a conservative
threshold we get

[T £ Y} C{S, > r/2)

where X; = I{Y; # Y} and S, = Y ieq Xt So
we can apply Hoeffding’s inequality to .S, (sum of

Algorithm 2: QuickXplain (QX) for MUS
Extraction
Input: Oracle O;
Candidate set S;
Background B (assumed consistent)
Output: Subset-minimal inconsistent set
A C S (or @)
1 if S = @ then
2 L return &

3 if O(BUS) = cons then

4 | return @

5 if |S| = 1 then

6 | returnS

7 Split .S into two (nearly) equal parts S1, S9;
8 Ay < QX(0, S1,BUSy);

9 Ay < QX(O, So, BU Al);

10 return A U Ay

independent Bernoulli variables with means < ¢ £
max{c, 3} < . Forany a > 0, we have

2a
Pr(Sr - E[Sr] > a) < eXp(_T)

here E[S,] = Y °;_ E[X;] < re. Seta = 7«(% _
) = rv. Then,
1
Pr(ST > T/Q) < Pr(ST - E[Sr] > 7"(5 - E))
< exp(—2r72).

Combining together we get per-call bound

Pr(}?m“j £Y) < exp(—2rvy?).

B Hitting Set Approximation

Lemma B.1 (Greedy Hitting Set Approxima-
tion (Vazirani, 2001)). Let U be a family of m
MUSes (conflict sets) over facts F. The greedy hit-
ting set algorithm returns a hitting set H satisfying
|H| < (14 lnm) |H*|, where H* is an optimal
(minimum-cardinality) hitting set of U.

C QuickXplain

QuickXplain (QX) is a classic divide-an-conquer
method for localizing a minimal unsatisfiable sub-
set (MUS) from an inconsistent set S under a con-
sistency oracle O : 2" — {cons, incons} (Junker,
2004). The algorithm adaptively queries subsets to
find a subset-minimal inconsistent core with loga-
rithmic depth in |S|. We provide a pseudocode in



Query Complexity Comparison
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Figure 1: Scaling of query counts with number of facts
N. Pairwise checking is quadratic, while QXR scales
polylogarithmically

Algorithm 2. QX narrows the inconsistent subset
by recursively testing halves of S. If B U S; is
inconsistent, the conflict lies in Sp; otherwise it
lies in S5. Recursion stops once singleton conflicts
are reached, yielding a subset-minimal inconsistent
set. For a perfect oracle, QX requires O(k log|S|)
queries to locate a conflict of size k.

D Pairwise/NLI Baselines are not
comparable at scale

Methods that decide consistency by evaluating all
sentence pairs require (J;] ) oracle calls. For typi-
cal sizes of facts e.g., N € [30, 100], that implies
435 — 4950 calls per instance. Under noisy LLM
oracles, each decsion further requires r repetitions
(majority vote). Our QXR algorithm performs at
most I -m - (klog N') number of queries where & is
the MUS maximum size (empirically small), m is
the constraint scope (if no constraints or in general
m = 1) and I is the number of outer rounds.In our
experiments k£ < 6, m = 1, we show a plot how
complexity scales in Figure 1 We also illustrate
common baselines and why they do not scale in
Table 2.

E Synthetic Dataset

Entities and predicates. We sample en-
tity names for PERSON, ORG, LOC,EVENT, and
ANIMAL. Facts are rendered from a small pred-
icate bank with negation support, including
unary categories (IsTiger, IsDog, IsActor,
IsPolitician, IsAnimal), binary relations
(WorksFor, LocatedIn), and temporal precedence
(Before). Numeric paraphrases (AtLeastCases,
AtMostCases) provide clutter.

Planted MUS patterns.
MUSes per instance:

We inject one or more

* size-2 contradiction (A, —A),
* size-3 temporal cycle,

* size-3 “exactly one” parity conflict consisting
of arule sentence (Exactly one of X, Y, Z holds)
plus two of the three facts.

Distractors. We add on-topic true facts and a
small fraction of off-topic false facts (e.g., does
not work for, is not located in) to create realistic
clutter.

Gold Annotations. For each instance we store
the gold MUS family Ugoqas lists of sentence IDs.
The gold consistent subset Fyoq is defined as the
maximal consistent subset obtained by removing a
minimum hitting set over Ugo1q (greedy approxima-
tion).

F Prompting Analysis

All main experiments in the paper use a zero-
shot LLM-judge setting. To assess sensitivity to
prompt design, we additionally evaluated the direct-
judge baseline on VitaminC using several advanced
prompting strategies. Across all prompt styles, we
observe the same qualitative trend: high precision
but substantially lower recall due to over-removal
of consistent facts. These experiments were run
on a subset of the dataset; for reference, we also
restate the original zero-shot baseline and QXR
results from the full evaluation.

Claude-3.7 (Sonnet)

Prompting Style P R F1

Zero-shot 0986 0.681 0.797
Chain-of-Thought 0973 0.684 0.792
Decomposition 0987 0.626 0.755
Few-shot 0975 0.658 0.775
Self-consistency 0.986 0.547 0.694
Original zero-shot baseline  0.979  0.854  0.909
Original QXR 0.956 0975 0.965

Claude-4 (Sonnet)

Prompting Style P R F1

Zero-shot 0989 0.928 0.954
Chain-of-Thought 0.987 0.908 0.942
Decomposition 0.677 0.608 0.638
Few-shot 0992 0.891 0.932
Self-consistency 0.992 0.768 0.860
Original zero-shot baseline  0.956  0.877 0913
Original QXR 0.938 0.983 0.960

DeepSeek-R1



Method Description Complexity

Pairwise NLI Graph Run NLI on every pair of claims, removing any node in- O(N?)

(FEVER-style) volved in a contradiction edge.

Transitive Closure / En- Build a full entailment—contradiction graph and perform > O(N?)

tailment Graph reasoning (e.g., SAT solving or closure).

LLM-as-NLI Prompt an LLM with two sentences (e.g., “Does A contradict O(N?)
B?).

Multi-premise NLI Treat the entire set of claims as premises and ask if they o(1)
jointly entail a hypothesis.

Clustered Pairwise For each claim, compare only to its top-K nearest neighbors O(NK)

(embedding-based).

Table 2: Common NLI-style baselines for consistency checking and their computational complexity. Pairwise and
entailment-graph methods grow quadratically with the number of claims, making them infeasible for large clusters.

Multi-premise NLI corresponds to our baseline.

Prompting Style P R F1
Zero-shot 0.993 0.860 0910
Chain-of-Thought 0.996 0.850 0.907
Decomposition 0.996 0.882 0.930
Few-shot 0.882 0.761 0.813
Self-consistency 0.987 0.718 0.817
Original zero-shot baseline  0.980 0.730  0.827
Original QXR 0.973  0.990 0.981
GPT-0SS-120B
Prompting Style P R F1
Zero-shot 0.994 0.876 0.920
Chain-of-Thought 0.995 0.851 0.903
Decomposition 0.954 0.816 0.865
Few-shot 0.997 0.896 0.932
Self-consistency 0.996 0475 0.624
Original zero-shot baseline  0.984  0.926  0.953
Original QXR 0956 0.995 0.975
Mixtral-8 x7B
Prompting Style P R F1
Zero-shot 0.947 0.568 0.701
Chain-of-Thought 0.997 0.570 0.700
Decomposition 0.991 0.535 0.673
Few-shot 0.238 0.142 0.175
Self-consistency 0.990 0.522 0.674
Original zero-shot baseline  0.955 0.603  0.724
Original QXR 0.968 0.978 0.972
G Prompts

This appendix lists the exact prompts used in our
experiments. All prompts were intentionally kept
simple and symmetric across methods to isolate
algorithmic effects rather than prompt engineer-
ing. For all baselines that output a subset of facts,
models are required to return the full text of each
retained fact (not indices) as a Python list enclosed
in an <answer> tag.

Subset-consistency oracle (QXR). Given a
queried subset of facts (optionally with a back-
ground set B), we ask the LLM to judge whether
all statements can be true simultaneously:

Factual statements. Some may contradict.

{bg}Statements:
{facts_block}

Respond ONLY:
- CONSISTENT
- INCONSISTENT

Answer:

Direct baseline (zero-shot). The LLM is asked
to return a mutually consistent subset of facts:

Given the following factual statements,
some may contradict.

Return a Python 1list of facts that
are mutually consistent, meaning all
returned facts can be true at the same
time.

Facts:
{facts_block}

CRITICAL: Return ONLY a Python
list using the FULL TEXT of each fact.
<answer>["fact1", "fact2",
...]</answer>

Direct baseline (Chain-of-Thought prompting).
We encourage structured reasoning while constrain-
ing the output format:

Given the following facts, some
may contradict. Find all mutually
consistent facts.

Facts:
{facts_block}

Think step-by-step:

1. Identify pairs
contradict each other.
2. For each contradiction, decide which
fact to keep.

3. Return the consistent subset.

of facts that

CRITICAL: In the <answer> tag, return
the FULL TEXT of each fact, NOT numbers.
Example: <answer>["The sky is blue”,
"Grass is green"]</answer>



Direct baseline (Decomposition prompting).
The task is decomposed into detection and reso-
lution:

Task: Select a mutually consistent
subset of the following facts.

Facts:
{facts_block}

Step 1 - Identify contradicting
facts.

Step 2 - Decide which facts to keep.
Step 3 - Output the consistent subset.

CRITICAL: Return ONLY a Python
list with the FULL TEXT of each fact.
<answer>["full fact text 1", "full fact
text 2", ...J</answer>

Direct baseline (Few-shot prompting). We pro-
vide two illustrative examples followed by the tar-
get instance:

Given facts that may contradict, return
the subset that is mutually consistent.

Example 1:

- The sky is blue

- The sky is red

- Grass is green

<answer>["The sky is blue”, "Grass is
green”]</answer>

Example 2:

- Paris is in France

- Paris has 2 million people

- Paris has 10 million people
<answer>["Paris is in France”, "Paris
has 2 million people”]</answer>

Now solve:
Facts:
{facts_block}

<answer>

Direct baseline (Self-consistency prompting).

We sample multiple outputs using the same prompt

and aggregate by majority vote over selected facts:
Given the following facts, some may
contradict.

Return ONLY a Python list of facts that
are mutually consistent.

Facts:
{facts_block}

<answer>["fact1", "fact2",
...1</answer>

11
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